论文标题

元素$ n $的椭圆形属用于完整的交叉口

Elliptic genera of level $N$ for complete intersections

论文作者

Wang, Jianbo, Wang, Yuyu, Yu, Zhiwang

论文摘要

我们在任何完整的交叉点上研究$γ_1(n)$的cusps的椭圆属$ n $。这些属被描述为广义二项式系数的总结,其中每个广义二项式系数与完整交叉点的维度和多度有关。对于完整的交点$ x_n(\ usewissline {d})$,写入$ c_1(x_n(\ usewiseline {d})))= c_1x $,其中$ x \ in H^2(x_n(x_n(\ usevenline {d}})在$ c_1> 0,= 0 $或$ <0 $的情况下,我们主要讨论了$ x_n(\ usevenline {d})$的级别$ n $的椭圆形属的值。特别是,有关todd属的值,$ \ hat {a} $ - 属和$ a_k $ -genus的$ x_n(\ usevenline {d})$可以从级别$ n $的椭圆属中得出。

We study the elliptic genera of level $N$ at the cusps of $Γ_1(N)$ for any complete intersection. These genera are described as the summations of generalized binomial coefficients, where each generalized binomial coefficient is related to the dimension and multi-degree of complete intersection. For complete intersection $X_n(\underline{d})$, write $c_1(X_n(\underline{d}))=c_1x$, where $x\in H^2(X_n(\underline{d});\mathbb{Z})\cong\mathbb{Z}$ is a generator. We mainly discuss the values of the elliptic genera of level $N$ for $X_n(\underline{d})$ in the case of $c_1>0, =0$ or $<0$. In particular, the values about the Todd genus, $\hat{A}$-genus and $A_k$-genus of $X_n(\underline{d})$ can be derived from the elliptic genera of level $N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源