论文标题
多型线圈MRI重建挑战 - 评估大脑MRI重建模型及其具有变化线圈配置的概括性
Multi-Coil MRI Reconstruction Challenge -- Assessing Brain MRI Reconstruction Models and their Generalizability to Varying Coil Configurations
论文作者
论文摘要
基于深度学习的大脑磁共振成像(MRI)重建方法具有加速MRI采集过程的潜力。然而,科学界缺乏适当的基准来评估高分辨率大脑图像的MRI重建质量,并评估这些提出的算法在存在很小但预期的数据分布的存在下如何行为。多组磁共振图像(MC-MRI)重建挑战提供了一个基准,旨在使用大型高分辨率,三维,T1加权MRI扫描的大型数据集解决这些问题。挑战有两个主要目标:1)比较该数据集上的不同MRI重建模型,以及2)评估这些模型对使用不同数量接收器线圈获取的数据的普遍性。在本文中,我们描述了实验设计的挑战,并总结了一组基线和最先进的大脑MRI重建模型的结果。我们提供有关当前MRI重建最新的相关比较信息,并强调获得更广泛临床采用之前需要的可概括模型的挑战。 MC-MRI基准数据,评估代码和当前挑战排行榜将公开可用。它们为大脑MRI重建领域的未来发展提供了客观的绩效评估。
Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess MRI reconstruction quality of high-resolution brain images, and evaluate how these proposed algorithms will behave in the presence of small, but expected data distribution shifts. The Multi-Coil Magnetic Resonance Image (MC-MRI) Reconstruction Challenge provides a benchmark that aims at addressing these issues, using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans. The challenge has two primary goals: 1) to compare different MRI reconstruction models on this dataset and 2) to assess the generalizability of these models to data acquired with a different number of receiver coils. In this paper, we describe the challenge experimental design, and summarize the results of a set of baseline and state of the art brain MRI reconstruction models. We provide relevant comparative information on the current MRI reconstruction state-of-the-art and highlight the challenges of obtaining generalizable models that are required prior to broader clinical adoption. The MC-MRI benchmark data, evaluation code and current challenge leaderboard are publicly available. They provide an objective performance assessment for future developments in the field of brain MRI reconstruction.