论文标题
一种分布式的私人算法,用于在不可约束的设置中用于资源分配
A Distributed Differentially Private Algorithm for Resource Allocation in Unboundedly Large Settings
论文作者
论文摘要
我们引入了一种实用且可扩展的算法(PALMA),用于解决多代理系统的基本问题之一 - 查找匹配和分配 - 在无限制的设置中(例如,在城市环境中的资源分配,启用式机动性的系统等),同时提供强大的最差隐私保证。帕尔玛(Palma)是分散的,在设备上运行,不需要经常沟通,并且在合理的假设下会在恒定时间内收敛。我们使用两者中的真实数据来评估Palma的行动能力和纸质作业场景,并证明它提供了强大的隐私水平($ \ varepsilon \ lepsilon \ leq 1 $,中位数低至$ \ varepsilon = 0.5 $ $ \ varepsilon = 0.5 $)和高质量匹配(最高范围$ $ $ $ $ $ $ $ $ $ $ $ $ $ $普遍企业,最大重量匹配基线)。
We introduce a practical and scalable algorithm (PALMA) for solving one of the fundamental problems of multi-agent systems -- finding matches and allocations -- in unboundedly large settings (e.g., resource allocation in urban environments, mobility-on-demand systems, etc.), while providing strong worst-case privacy guarantees. PALMA is decentralized, runs on-device, requires no inter-agent communication, and converges in constant time under reasonable assumptions. We evaluate PALMA in a mobility-on-demand and a paper assignment scenario, using real data in both, and demonstrate that it provides a strong level of privacy ($\varepsilon \leq 1$ and median as low as $\varepsilon = 0.5$ across agents) and high-quality matchings (up to $86\%$ of the non-private optimal, outperforming even the privacy-preserving centralized maximum-weight matching baseline).