论文标题
磁共振前列腺细分中的深度学习:评论和新的视角
Deep learning in magnetic resonance prostate segmentation: A review and a new perspective
论文作者
论文摘要
前列腺放射疗法是一种良好的治愈性肿瘤模式,将来将使用磁共振成像(MRI)放射疗法来进行日常自适应放射疗法靶标定义。但是,准确地从MRI数据中描述前列腺所需的时间是一个耗时的过程。深度学习已被确定为一种潜在的新技术,用于在前列腺癌中提供精度放射疗法,在这种技术中,准确的前列腺分割有助于癌症检测和治疗。但是,由于不同的采集协议,数据集的大小相对较小,因此受过训练的模型在临床环境中的应用中可能会受到限制。因此,为了探索前列腺分割的领域并发现可普遍的解决方案,我们回顾了先前的前列腺分割中最先进的深度学习算法;通过讨论其局限性和优势来为该领域提供见解;并提出了优化的2D U-NET,用于MR前列腺分割。我们使用DICE相似性系数(DSC)作为性能度量标准评估四个公开可用数据集的性能。我们的实验包括在数据集评估和跨数据库评估中。最好的结果是通过复合评估(DSC在十项全能测试集上为0.9427的DSC),并且通过跨数据库评估(DSC为0.5892,前列腺X训练集,Promise 12测试集)实现了最差的结果。我们概述了挑战,并为将来的工作提供建议。我们的研究为前列腺细分先生提供了新的视角,更重要的是,我们为研究人员提供了标准化的实验设置,以评估其算法。我们的代码可在https://github.com/aiemmu/mri \_prostate上找到。
Prostate radiotherapy is a well established curative oncology modality, which in future will use Magnetic Resonance Imaging (MRI)-based radiotherapy for daily adaptive radiotherapy target definition. However the time needed to delineate the prostate from MRI data accurately is a time consuming process. Deep learning has been identified as a potential new technology for the delivery of precision radiotherapy in prostate cancer, where accurate prostate segmentation helps in cancer detection and therapy. However, the trained models can be limited in their application to clinical setting due to different acquisition protocols, limited publicly available datasets, where the size of the datasets are relatively small. Therefore, to explore the field of prostate segmentation and to discover a generalisable solution, we review the state-of-the-art deep learning algorithms in MR prostate segmentation; provide insights to the field by discussing their limitations and strengths; and propose an optimised 2D U-Net for MR prostate segmentation. We evaluate the performance on four publicly available datasets using Dice Similarity Coefficient (DSC) as performance metric. Our experiments include within dataset evaluation and cross-dataset evaluation. The best result is achieved by composite evaluation (DSC of 0.9427 on Decathlon test set) and the poorest result is achieved by cross-dataset evaluation (DSC of 0.5892, Prostate X training set, Promise 12 testing set). We outline the challenges and provide recommendations for future work. Our research provides a new perspective to MR prostate segmentation and more importantly, we provide standardised experiment settings for researchers to evaluate their algorithms. Our code is available at https://github.com/AIEMMU/MRI\_Prostate.