论文标题
纳米晶甲烷水合的机械蠕变不稳定
Mechanical Creep Instability of Nanocrystalline Methane Hydrates
论文作者
论文摘要
天然气水合物(NGHS)的机械蠕变行为对于理解地球上含气体水合物沉积物的机械不稳定性至关重要。受实验挑战的限制,纳米晶甲烷水合物的固有蠕变机制在很大程度上仍未知。在此,研究了使用大规模分子动力学(MD)模拟,研究了纳米晶甲烷水合物的机械蠕变行为。据表明,机械蠕变响应是由晶粒尺寸以及温度和静态应力的外部条件的内部微观结构极大地决定的。有趣的是,在纳米晶甲烷水合物中观察到了长长的稳态蠕变,可以通过修改的本构成鸟 - 摩克吉人模型来描述。微观结构分析表明,晶粒,晶界扩散(GB)扩散和GB滑动的变形集体控制纳米晶甲烷水合的机械蠕变行为。此外,结构转化在其机械蠕变机制中也似乎很重要。这项研究为了解气体水合物的机械蠕变场景提供了新的见解。
Mechanical creep behaviors of natural gas hydrates (NGHs) are of importance for understanding mechanical instability of gas hydrate-bearing sediments on Earth. Limited by the experimental challenges, intrinsic creep mechanisms of nanocrystalline methane hydrates remain largely unknown yet at molecular scale. Herein, using large-scale molecular dynamics (MD) simulations, mechanical creep behaviors of nanocrystalline methane hydrates are investigated. It is revealed that mechanical creep responses are greatly dictated by internal microstructures of crystalline grain size and external conditions of temperature and static stress. Interestingly, a long steady-state creep is observed in nanocrystalline methane hydrates, which can be described by a modified constitutive Bird-Dorn-Mukherjee model. Microstructural analysis show that deformations of crystalline grains, grain boundary (GB) diffusion and GB sliding collectively govern the mechanical creep behaviors of nanocrystalline methane hydrates. Furthermore, structural transformation also appears important in their mechanical creep mechanisms. This study sheds new insights into understanding the mechanical creep scenarios of gas hydrates.