论文标题
斯坦因变异模型预测控制
Stein Variational Model Predictive Control
论文作者
论文摘要
不确定性下的决策对于现实世界中的自主系统至关重要。模型预测控制(MPC)方法在实践中表现出了良好的性能,但在处理复杂的概率分布时仍保持有限。在本文中,我们提出了MPC的概括,该MPC代表了多种解决方案作为后验分布。通过将MPC作为贝叶斯推论问题,我们采用了变异方法来进行后验计算,自然地编码了决策问题的复杂性和多模式。我们提出了一种Stein变异梯度下降法,以直接估计后部对控制参数,给定成本函数和观察到的状态轨迹。我们表明,该框架导致在具有挑战性的,非凸的最佳控制问题方面成功计划。
Decision making under uncertainty is critical to real-world, autonomous systems. Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex probability distributions. In this paper, we propose a generalization of MPC that represents a multitude of solutions as posterior distributions. By casting MPC as a Bayesian inference problem, we employ variational methods for posterior computation, naturally encoding the complexity and multi-modality of the decision making problem. We present a Stein variational gradient descent method to estimate the posterior directly over control parameters, given a cost function and observed state trajectories. We show that this framework leads to successful planning in challenging, non-convex optimal control problems.