论文标题
研究心脏MRI域移位下语义分割的鲁棒性
Studying Robustness of Semantic Segmentation under Domain Shift in cardiac MRI
论文作者
论文摘要
心脏磁共振成像(CMRI)是许多心脏有关疾病诊断不可或缺的一部分。最近,深层神经网络已显示出成功的自动分割,从而减轻了耗时的心脏结构手动轮廓负担。此外,诸如NNU-NET之类的框架提供了完全自动的模型配置,即使是通过非专家,也可以看到未开箱即用的应用程序的数据集。但是,当前的研究通常忽略了临床现实的情景,在这种情况下,训练有素的网络被应用于来自不同领域的数据,例如偏离扫描仪或成像协议。这有可能导致在现实生活中的深度学习模型中意外的性能下降。在这项工作中,我们系统地研究了来自多个临床中心和扫描仪供应商的图像的域转移的挑战和机会。为了维持开箱即用的可用性,我们建立在由NNU-NET框架配置的固定的U-NET体系结构上,以研究各种数据增强技术和批处理标准化层作为易于限制的管道组件,并提供有关如何在现有深度学习方法中提高领域通用能力的一般指南。我们提出的方法在多中心,多供应商和多疾病心脏病图像分割挑战(M&M)中排名第一。
Cardiac magnetic resonance imaging (cMRI) is an integral part of diagnosis in many heart related diseases. Recently, deep neural networks have demonstrated successful automatic segmentation, thus alleviating the burden of time-consuming manual contouring of cardiac structures. Moreover, frameworks such as nnU-Net provide entirely automatic model configuration to unseen datasets enabling out-of-the-box application even by non-experts. However, current studies commonly neglect the clinically realistic scenario, in which a trained network is applied to data from a different domain such as deviating scanners or imaging protocols. This potentially leads to unexpected performance drops of deep learning models in real life applications. In this work, we systematically study challenges and opportunities of domain transfer across images from multiple clinical centres and scanner vendors. In order to maintain out-of-the-box usability, we build upon a fixed U-Net architecture configured by the nnU-net framework to investigate various data augmentation techniques and batch normalization layers as an easy-to-customize pipeline component and provide general guidelines on how to improve domain generalizability abilities in existing deep learning methods. Our proposed method ranked first at the Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Segmentation Challenge (M&Ms).