论文标题

不确定性作为透明的形式:测量,交流和使用不确定性

Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty

论文作者

Bhatt, Umang, Antorán, Javier, Zhang, Yunfeng, Liao, Q. Vera, Sattigeri, Prasanna, Fogliato, Riccardo, Melançon, Gabrielle Gauthier, Krishnan, Ranganath, Stanley, Jason, Tickoo, Omesh, Nachman, Lama, Chunara, Rumi, Srikumar, Madhulika, Weller, Adrian, Xiang, Alice

论文摘要

算法透明度需要将系统属性暴露于各种利益相关者的目的,包括理解,改善和争议预测。到目前为止,大多数对算法透明度的研究主要集中在解释性上。解释性尝试为利益相关者提供机器学习模型的行为的原因。但是,仅了解模型的特定行为可能不足以使利益相关者能够衡量模型是错误的还是缺乏足够的知识来解决手头的任务。在本文中,我们主张通过估计和传达与模型预测相关的不确定性来考虑透明度的互补形式。首先,我们讨论评估不确定性的方法。然后,我们表征了如何使用不确定性来减轻模型不公平,增强决策和构建值得信赖的系统。最后,我们概述了向利益相关者展示不确定性的方法,并建议如何收集将不确定性纳入现有ML管道所需的信息。这项工作构成了跨学科的评论,该审查是从机器学习,可视化/HCI,设计,决策和公平的文献中得出的。我们旨在鼓励研究人员和从业人员衡量,交流和利用不确定性作为透明的一种形式。

Algorithmic transparency entails exposing system properties to various stakeholders for purposes that include understanding, improving, and contesting predictions. Until now, most research into algorithmic transparency has predominantly focused on explainability. Explainability attempts to provide reasons for a machine learning model's behavior to stakeholders. However, understanding a model's specific behavior alone might not be enough for stakeholders to gauge whether the model is wrong or lacks sufficient knowledge to solve the task at hand. In this paper, we argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions. First, we discuss methods for assessing uncertainty. Then, we characterize how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems. Finally, we outline methods for displaying uncertainty to stakeholders and recommend how to collect information required for incorporating uncertainty into existing ML pipelines. This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness. We aim to encourage researchers and practitioners to measure, communicate, and use uncertainty as a form of transparency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源