论文标题

超越扩展的Selberg类:$ 1 <d_f <2 $

Beyond the extended Selberg class: $1<d_F< 2$

论文作者

Balasubramanian, R., Raghunathan, Ravi

论文摘要

我们表明,一类Dirichlet系列$ {\ Mathfrak {a}}^{\#} $比扩展的Selberg类$ {\ Mathscr {\ Mathscr {s}}^{\#} $大得多,并且还包含标准和外部$ $ $ l $ -functrict $ -functrict $ -functions $ -functions $ - $ gl_n $在数字字段上,没有任何元素在$ 1 $和$ 2 $之间的任何元素。我们更一般定理的证明与kaczorowski和perelli的证明$ {\ mathscr {s}}}^{\#} $的证明,即使在这种情况下,也更短,更简单。

We show that a class of Dirichlet series ${\mathfrak{A}}^{\#}$ that is much larger than the extended Selberg class ${\mathscr{S}}^{\#}$, and also contains the standard as well as the tensor product, exterior square and symmetric square $L$-functions of automorphic $L$-functions of $GL_n$ over number fields, does not have any elements of degrees between $1$ and $2$. The proof of our more general theorem is very different from the proof of Kaczorowski and Perelli for the class ${\mathscr{S}}^{\#}$, and is much shorter and simpler even in that case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源