论文标题

兰格文扩散的状态依赖温度控制

State-Dependent Temperature Control for Langevin Diffusions

论文作者

Gao, Xuefeng, Xu, Zuo Quan, Zhou, Xun Yu

论文摘要

我们研究了非凸优化的背景下兰格文扩散的温度控制问题。对此类问题的经典最佳控制是Bang-Bang类型,该类型对错误过于敏感。一种补救措施是允许扩散探索其他温度值,从而使Bang-Bang控件平滑。我们通过随机宽松的控制配方来实现这一目标,该配方融合了温度控制的随机化并正规化其熵。我们得出了一种依赖状态的,截断的指数分布,该分布可用于在langevin算法中的样本温度,以HJB偏微分方程的解决方案。我们在一维基线示例上进行了数值实验,其中可以轻松地求解HJB方程,以将算法的性能与其他三种可用算法进行比较,以查找全局最佳。

We study the temperature control problem for Langevin diffusions in the context of non-convex optimization. The classical optimal control of such a problem is of the bang-bang type, which is overly sensitive to errors. A remedy is to allow the diffusions to explore other temperature values and hence smooth out the bang-bang control. We accomplish this by a stochastic relaxed control formulation incorporating randomization of the temperature control and regularizing its entropy. We derive a state-dependent, truncated exponential distribution, which can be used to sample temperatures in a Langevin algorithm, in terms of the solution to an HJB partial differential equation. We carry out a numerical experiment on a one-dimensional baseline example, in which the HJB equation can be easily solved, to compare the performance of the algorithm with three other available algorithms in search of a global optimum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源