论文标题

晶格模型的最先进的基质产品方法的比较研究,具有较大的本地希尔伯特空间

Comparative Study of State-of-the-Art Matrix-Product-State Methods for Lattice Models with Large Local Hilbert Spaces

论文作者

Stolpp, Jan, Köhler, Thomas, Manmana, Salvatore R., Jeckelmann, Eric, Heidrich-Meisner, Fabian, Paeckel, Sebastian

论文摘要

由没有全球粒子量保护的高维本地自由度组成的晶格模型构成了密切相关的量子多体系统的重要问题类别。例如,它们在电子播种机模型,腔,原子分子共振模型或超导体中实现。通常,这些系统可以使用完整的分析处理,并需要使用矩阵态(MPS)提供灵活且通用的ANSATZ类的数值方法进行研究。通常,MPS算法在局部希尔伯特空间的维度至少二次尺度。因此,需要限制此维度的量身定制方法才能进行有效的模拟。在这里,我们描述并比较了三种最先进的MPS方法,每种方法都利用了解决计算复杂性的不同方法。我们为荷斯坦模型的示例分析了这些方法的特性,进行了高精度计算以及对相关基态绿色的有限尺度分析。计算是在相图中的不同点进行的,得出了不同方法的全面图片。

Lattice models consisting of high-dimensional local degrees of freedom without global particle-number conservation constitute an important problem class in the field of strongly correlated quantum many-body systems. For instance, they are realized in electron-phonon models, cavities, atom-molecule resonance models, or superconductors. In general, these systems elude a complete analytical treatment and need to be studied using numerical methods where matrix-product states (MPS) provide a flexible and generic ansatz class. Typically, MPS algorithms scale at least quadratic in the dimension of the local Hilbert spaces. Hence, tailored methods, which truncate this dimension, are required to allow for efficient simulations. Here, we describe and compare three state-of-the-art MPS methods each of which exploits a different approach to tackle the computational complexity. We analyze the properties of these methods for the example of the Holstein model, performing high-precision calculations as well as a finite-size-scaling analysis of relevant ground-state obervables. The calculations are performed at different points in the phase diagram yielding a comprehensive picture of the different approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源