论文标题

通道瓷砖,以提高光学神经网络加速器的性能和准确性

Channel Tiling for Improved Performance and Accuracy of Optical Neural Network Accelerators

论文作者

Li, Shurui, Miscuglio, Mario, Sorger, Volker J., Gupta, Puneet

论文摘要

卷积神经网络(CNN)的低潜伏期,高通量推断仍然是一个挑战,特别是对于需要大量输入或大核大小的应用。 4F光学器件通过将卷积转换为光学域中计算上“免费”的傅里叶域乘积来加速CNN的解决方案。但是,现有的4F CNN系统遭受了全阳性传感器读数问题的困扰,这使得实现多渠道,多层CNN不可扩展甚至不切实际。在本文中,我们为4F CNN系统提出了一个简单的通道瓷砖方案,该方案利用4F系统的高分辨率在传感器检测前固有地在光学域中固有地执行通道求和,因此可以正确积累不同通道的输出。与艺术的状态相比,通道平铺具有相似的准确性,对传感量化的鲁棒性(33 \%在所需的传感精度中提高了33 \%)的误差和噪声(可容忍的传感噪声的降低10dB),需要0.5倍的总过滤器,10-50x+吞吐量的改进,并且需要降低所需的摄像头分辨率的摄像机分辨率/频段范围3x。不需要任何其他光学硬件,建议的通道瓷砖方法解决了高速,大规模的光学光学4F计算系统的重要吞吐量和精确瓶颈。

Low latency, high throughput inference on Convolution Neural Networks (CNNs) remains a challenge, especially for applications requiring large input or large kernel sizes. 4F optics provides a solution to accelerate CNNs by converting convolutions into Fourier-domain point-wise multiplications that are computationally 'free' in optical domain. However, existing 4F CNN systems suffer from the all-positive sensor readout issue which makes the implementation of a multi-channel, multi-layer CNN not scalable or even impractical. In this paper we propose a simple channel tiling scheme for 4F CNN systems that utilizes the high resolution of 4F system to perform channel summation inherently in optical domain before sensor detection, so the outputs of different channels can be correctly accumulated. Compared to state of the art, channel tiling gives similar accuracy, significantly better robustness to sensing quantization (33\% improvement in required sensing precision) error and noise (10dB reduction in tolerable sensing noise), 0.5X total filters required, 10-50X+ throughput improvement and as much as 3X reduction in required output camera resolution/bandwidth. Not requiring any additional optical hardware, the proposed channel tiling approach addresses an important throughput and precision bottleneck of high-speed, massively-parallel optical 4F computing systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源