论文标题
在线性模型中引起,合并和纪律识别信念的框架
A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models
论文作者
论文摘要
为了估计观察数据的因果影响,应用的研究人员必须施加信念。例如,仪器变量排除限制代表了这样一种信念,即该工具对感兴趣的结果没有直接影响。然而,关于仪器有效性的信念并不是孤立的。应用的研究人员经常讨论选择的可能方向以及其文章中的测量误差的潜力,但缺乏将这些信息纳入其分析的正式工具。不使用所有相关信息,不仅将钱留在桌子上;它冒着导致矛盾的风险,在这种矛盾中,人们对当前的问题持相互不相容的信念。为了解决这些问题,我们首先表征了与仪器无效,治疗内生性和非差异测量误差有关的联合限制,在工作试验线性模型中,表明对这三个维度的信念如何相互约束以及数据相互限制。使用这些信息,我们提出了一个贝叶斯框架,以帮助研究人员引起他们的信念,将其纳入估计并确保其相互连贯性。我们通过在经验微观经济学文献中得出的许多例子中说明了我们的框架来结束。
To estimate causal effects from observational data, an applied researcher must impose beliefs. The instrumental variables exclusion restriction, for example, represents the belief that the instrument has no direct effect on the outcome of interest. Yet beliefs about instrument validity do not exist in isolation. Applied researchers often discuss the likely direction of selection and the potential for measurement error in their articles but lack formal tools for incorporating this information into their analyses. Failing to use all relevant information not only leaves money on the table; it runs the risk of leading to a contradiction in which one holds mutually incompatible beliefs about the problem at hand. To address these issues, we first characterize the joint restrictions relating instrument invalidity, treatment endogeneity, and non-differential measurement error in a workhorse linear model, showing how beliefs over these three dimensions are mutually constrained by each other and the data. Using this information, we propose a Bayesian framework to help researchers elicit their beliefs, incorporate them into estimation, and ensure their mutual coherence. We conclude by illustrating our framework in a number of examples drawn from the empirical microeconomics literature.