论文标题
半参数模型的推理功能
Inference Functions for Semiparametric Models
论文作者
论文摘要
本文讨论了基于推理功能的合适版本的半摩托模型的推理技术。文本包含两个部分。在第一部分中,我们基于路径可不同的概念和统计功能可不同性的概念来回顾非参数模型的最佳理论。这些概念通过将统计功能的推断理论应用于将兴趣参数值与相应概率度量相关联的功能,从而适应了半参数模型的上下文。本文的第二部分讨论了半参数模型的推理函数理论。我们定义了一类规则推理功能,并提供了这些推理功能的两个等效特征:一个改编自参数模型的经典推理函数理论,一种是由统计模型的差分几何考虑的动机。这些特征产生了半参数模型下估计的最佳理论。我们为基于推理函数和半摩力值cramèr-rao结合的估计量的结合提供了必要和充分的条件。在特殊设计的功能空间上投影了感兴趣的参数的得分函数,我们获得了最佳的推理函数。考虑到存在足够的统计量时的估计,我们为条件原理提供了一种替代性理由,在半摩托模型的背景下。该文章以何时从常规推理函数得出的估计量获得了何时进行半磁性cramèr-rao结合的特征。
The paper discusses inference techniques for semiparametric models based on suitable versions of inference functions. The text contains two parts. In the first part, we review the optimality theory for non-parametric models based on the notions of path differentiability and statistical functional differentiability. Those notions are adapted to the context of semiparametric models by applying the inference theory of statistical functionals to the functional that associates the value of the interest parameter to the corresponding probability measure. The second part of the paper discusses the theory of inference functions for semiparametric models. We define a class of regular inference functions, and provide two equivalent characterisations of those inference functions: One adapted from the classic theory of inference functions for parametric models, and one motivated by differential geometric considerations concerning the statistical model. Those characterisations yield an optimality theory for estimation under semiparametric models. We present a necessary and sufficient condition for the coincidence of the bound for the concentration of estimators based on inference functions and the semiparametric Cramèr-Rao bound. Projecting the score function for the parameter of interest on specially designed spaces of functions, we obtain optimal inference functions. Considering estimation when a sufficient statistic is present, we provide an alternative justification for the conditioning principle in a context of semiparametric models. The article closes with a characterisation of when the semiparametric Cramèr-Rao bound is attained by estimators derived from regular inference functions.