论文标题
基于高斯工艺的最小值稳定控制器,用于控制不确定效应和动态的控制膜系统
Gaussian Process-based Min-norm Stabilizing Controller for Control-Affine Systems with Uncertain Input Effects and Dynamics
论文作者
论文摘要
本文提出了一种设计最小值控制Lyapunov函数(CLF)的方法,用于使用高斯工艺(GP)回归的控制膜系统的稳定控制器。为了估计状态和输入依赖性模型的不确定性,我们提出了一种新型的复合核,该内核捕获了问题的控制性质。此外,通过使用GP上限置信度分析,我们提供了回归误差的概率界限,从而导致基于CLF的稳定性机会约束的制定,该稳定性机会约束可以纳入最小值优化问题。我们表明,由此产生的优化问题是凸,我们称其为基于高斯过程的控制lyapunov功能二阶锥体程序(GP-CLF-SOCP)。 GP回归模型的数据收集过程和培训是以情节学习方式进行的。我们验证了倒置摆和运动学自行车模型的数值模拟中提出的算法和控制器,从而产生了稳定的轨迹,这些轨迹与我们实际上知道真正的植物动力学的轨迹非常相似。
This paper presents a method to design a min-norm Control Lyapunov Function (CLF)-based stabilizing controller for a control-affine system with uncertain dynamics using Gaussian Process (GP) regression. In order to estimate both state and input-dependent model uncertainty, we propose a novel compound kernel that captures the control-affine nature of the problem. Furthermore, by the use of GP Upper Confidence Bound analysis, we provide probabilistic bounds of the regression error, leading to the formulation of a CLF-based stability chance constraint which can be incorporated in a min-norm optimization problem. We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP). The data-collection process and the training of the GP regression model are carried out in an episodic learning fashion. We validate the proposed algorithm and controller in numerical simulations of an inverted pendulum and a kinematic bicycle model, resulting in stable trajectories which are very similar to the ones obtained if we actually knew the true plant dynamics.