论文标题

具有粗略数据和随机数据的广义KDV方程的Cauchy问题

The Cauchy problem for the generalized KdV equation with rough data and random data

论文作者

Yan, Wei, Yan, Xiangqian, Duan, Jinqiao, Huang, Jianhua

论文摘要

在本文中,我们考虑了具有粗略数据和随机数据的广义KDV方程的库奇问题。首先,我们证明$ u(x,t)\ longrightarrow u(x,0)$ as $ t \ t \ longrightArrow0 $ for A.E. $ x \ in \ mathbb {r} $带有$ u(x,0)\ in H^{s}(\ Mathbb {r})(s> \ frac {1} {2} {2} - \ frac {2} {2} {2} {k} {k \ geq8),k \ geq8)。 e^{ - t \ partial_ {x}^{3}} u(x,0)$ as $ t \ longrightArrow0 $ for a.e.。 $ x \ in \ Mathbb {r} $带有$ u(x,0)\ in H^{s}(\ Mathbb {r})(s> \ frac {1} {2} {2} - \ frac {2} {2} {2} {k} {k \ geq8),k \ geq8),k \ geq8)。 0} \ left \ | u(x,x,t)-e^{ - t \ partial_ {x}^{3}} u(x,0)\ right \ | _ {l_ {l_ {x}^{\ infty}} = 0,带有$ u(x,0)\ in h^{s}(\ Mathbb {r})(s> \ frac {1} {2} {2} - \ frac {2} {k+1},k \ geq5)$。第四,通过使用strichartz估计,概率的strichartz估计值,我们在$ h^{s}中建立了概率良好(\ mathbb {r})\ left(s> {\ rm max}) \ left \ {\ frac {1} {k+1} \ left(\ frac {1} {2} - \ frac {2} {2} {k} {k} \ right),\ frac {1} {1} {6} {6} - \ frac {2} {2} {k} {k} {k} {k} {k} {k} {k} {k} {k} {k} {k} {ranty \ right)我们的结果改善了Hwang,Kwak(Proc。Amer。Math。Soc。146(2018),267-280。)。第五,我们证明$ \forallε> 0,$ $ \ forallω\ inω_{t},$ $ \ lim \ limits_ {t \ longrightArrow0} \ left \ | u(x,x,t)-e^{ - t \ partial_ {x}^{3}} u^ω(x,0)\ right \ | _ {l_ {l_ {l_ {x}}}^{x}^{\ infty} { h^{s}(\ mathbb {r})(s> \ frac {1} {6} {6},k \ geq6),$其中$ {\ rm p} \ rm p}(ω__{t}) \ left( - \ frac {c} {t^{\fracε{48K}} \ | u(x,0)\ | _ {h^{h^{s}}}}^{2}}}}}}} \ right)$ and $ u^ω(x,0)$是$ u(x,0)$的随机化。最后,我们证明$ \forallε> 0,$ $ \ forallω\ inω_{t},\ lim \ limits_ { p}(ω__{t})\ geq 1- c_ {1} {\ rm exp} \ left( - \ frac {c} {t^{t^{\fracε{48K}}} \ | u(x,0) h^{s}(\ mathbb {r})(s> \ frac {1} {6},k \ geq6)$。

In this paper, we consider the Cauchy problem for the generalized KdV equation with rough data and random data. Firstly, we prove that $u(x,t)\longrightarrow u(x,0)$ as $t\longrightarrow0$ for a.e. $x\in \mathbb{R}$ with $u(x,0)\in H^{s}(\mathbb{R})(s>\frac{1}{2}-\frac{2}{k},k\geq8).$ Secondly, we prove that $u(x,t)\longrightarrow e^{-t\partial_{x}^{3}}u(x,0)$ as $t\longrightarrow0$ for a.e. $x\in \mathbb{R}$ with $u(x,0)\in H^{s}(\mathbb{R})(s>\frac{1}{2}-\frac{2}{k},k\geq8).$ Thirdly, we prove that $\lim\limits_{t\longrightarrow 0}\left\|u(x,t)-e^{-t\partial_{x}^{3}}u(x,0)\right\|_{L_{x}^{\infty}}=0$ with $u(x,0)\in H^{s}(\mathbb{R})(s>\frac{1}{2}-\frac{2}{k+1},k\geq5)$. Fourthly, by using Strichartz estimates, probabilistic Strichartz estimates, we establish the probabilistic well-posedness in $H^{s}(\mathbb{R})\left(s>{\rm max} \left\{\frac{1}{k+1}\left(\frac{1}{2}-\frac{2}{k}\right), \frac{1}{6}-\frac{2}{k}\right\}\right)$ with random data. Our result improves the result of Hwang, Kwak (Proc. Amer. Math. Soc. 146(2018), 267-280.). Fifthly, we prove that $\forall ε>0,$ $\forall ω\in Ω_{T},$ $\lim\limits_{t\longrightarrow0}\left\|u(x,t)-e^{-t\partial_{x}^{3}}u^ω(x,0)\right\|_{L_{x}^{\infty}}=0$ with $u(x,0)\in H^{s}(\mathbb{R})(s>\frac{1}{6},k\geq6),$ where ${\rm P}(Ω_{T})\geq 1- C_{1}{\rm exp} \left(-\frac{C}{T^{\fracε{48k}}\|u(x,0)\|_{H^{s}}^{2}}\right)$ and $u^ω(x,0)$ is the randomization of $u(x,0)$. Finally, we prove that $\forall ε>0,$ $\forall ω\in Ω_{T}, \lim\limits_{t\longrightarrow0}\left\|u(x,t)-u^ω(x,0)\right\|_{L_{x}^{\infty}}=0$ with ${\rm P}(Ω_{T})\geq 1- C_{1}{\rm exp} \left(-\frac{C}{T^{\fracε{48k}}\|u(x,0)\|_{H^{s}}^{2}}\right)$ and $u(x,0)\in H^{s}(\mathbb{R})(s>\frac{1}{6},k\geq6)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源