论文标题

从附带信息中的零射击关系分类

Zero-shot Relation Classification from Side Information

论文作者

Gong, Jiaying, Eldardiry, Hoda

论文摘要

我们提出了一个零射的学习关系分类(ZSLRC)框架,该框架通过识别培训数据中不存在的新型关系的能力来改善最先进的框架。零拍的学习方法模仿了人类学习和识别没有先验知识的新概念的方式。为此,ZSLRC使用了先进的原型网络,这些网络经过修改以利用加权侧(辅助)信息。 ZSLRC的侧面信息是由关键字,名称实体的高音及其同义词构建的。 ZSLRC还包括一个自动高表萃取框架,该框架直接从Web中获取各种名称实体的高鼻。 ZSLRC改进了最先进的少数学习关系分类方法,这些方法依赖于标记的培训数据,因此即使在某些关系中没有相应的标记示例的培训示例的现实情况下,也更广泛地适用。我们使用两个公共数据集(NYT和LINDREL)上的广泛实验提出了结果,并表明ZSLRC在监督学习,很少的学习和零拍学习任务方面显着优于最先进的方法。我们的实验结果还证明了我们提出的模型的有效性和鲁棒性。

We propose a zero-shot learning relation classification (ZSLRC) framework that improves on state-of-the-art by its ability to recognize novel relations that were not present in training data. The zero-shot learning approach mimics the way humans learn and recognize new concepts with no prior knowledge. To achieve this, ZSLRC uses advanced prototypical networks that are modified to utilize weighted side (auxiliary) information. ZSLRC's side information is built from keywords, hypernyms of name entities, and labels and their synonyms. ZSLRC also includes an automatic hypernym extraction framework that acquires hypernyms of various name entities directly from the web. ZSLRC improves on state-of-the-art few-shot learning relation classification methods that rely on labeled training data and is therefore applicable more widely even in real-world scenarios where some relations have no corresponding labeled examples for training. We present results using extensive experiments on two public datasets (NYT and FewRel) and show that ZSLRC significantly outperforms state-of-the-art methods on supervised learning, few-shot learning, and zero-shot learning tasks. Our experimental results also demonstrate the effectiveness and robustness of our proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源