论文标题

对条件解决的特征值方程的严重误解

Gross misinterpretation of a conditionally solvable eigenvalue equation

论文作者

Amore, Paolo, Fernández, Francisco M.

论文摘要

我们解决了一个特征值方程,该方程出现在几篇论文中,涉及广泛的物理问题。 Frobenius方法导致了功率系列系数的三个复发关系,在合适的截断下,对于模型参数的特定值,在合适的截断下产生了精确的分析特征值和特征函数。从这些解决方案中,一些研究人员得出了各种预测,例如允许的角频率,允许的场强度等。我们还通过变异的雷利 - 里茨方法来数值求解特征值方程,并将所得的特征值与截断条件提供的特征值进行比较。通过这种方式,我们证明这些物理预测仅仅是截断条件的伪影。

We solve an eigenvalue equation that appears in several papers about a wide range of physical problems. The Frobenius method leads to a three-term recurrence relation for the coefficients of the power series that, under suitable truncation, yields exact analytical eigenvalues and eigenfunctions for particular values of a model parameter. From these solutions some researchers have derived a variety of predictions like allowed angular frequencies, allowed field intensities and the like. We also solve the eigenvalue equation numerically by means of the variational Rayleigh-Ritz method and compare the resulting eigenvalues with those provided by the truncation condition. In this way we prove that those physical predictions are merely artifacts of the truncation condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源