论文标题

社会距离和共同19:结构化剂量反应关系的随机推断

Social Distancing and COVID-19: Randomization Inference for a Structured Dose-Response Relationship

论文作者

Zhang, Bo, Heng, Siyu, Ye, Ting, Small, Dylan S.

论文摘要

社会距离被广泛认为是打击新型冠状病毒的有效公共卫生政策。但是,极端的社会疏远有成本,尚不清楚实现公共卫生影响需要多少社会距离。在本文中,我们开发了一个基于设计的框架,以推断社会疏远与COVID-19相关死亡人数和病例数之间的剂量反应关系。我们首先讨论如何将观察数据嵌入时间独立的连续治疗剂量中,以近似随机实验,并开发基于随机的程序,该程序是否可以测试结构化剂量反应关系是否适合数据。然后,我们将设计和测试程序推广,以适应时间依赖的治疗剂量轨迹,并将剂量反应关系推广到纵向环境。最后,我们使用拟议的设计和测试程序来调查美国在美国重新开放的社会距离对公共卫生结果的影响,该数据使用来自UNACAST,UNACAST,美国人口普查局以及县健康排名和路线图计划的数据收集的数据。我们拒绝了一个主要分析的无效假设,该假设指出了从2020年4月27日至2020年6月28日的社会距离,从2020年6月29日至2020年8月2日(p-value <0.001)对与COVID-19相关的死亡人数没有任何影响,并发现在案例中降低了案例增长的案例,而不是案例的数字相比,它会降低。

Social distancing is widely acknowledged as an effective public health policy combating the novel coronavirus. But extreme social distancing has costs and it is not clear how much social distancing is needed to achieve public health effects. In this article, we develop a design-based framework to make inference about the dose-response relationship between social distancing and COVID-19 related death toll and case numbers. We first discuss how to embed observational data with a time-independent, continuous treatment dose into an approximate randomized experiment, and develop a randomization-based procedure that tests if a structured dose-response relationship fits the data. We then generalize the design and testing procedure to accommodate a time-dependent, treatment dose trajectory, and generalize a dose-response relationship to a longitudinal setting. Finally, we apply the proposed design and testing procedures to investigate the effect of social distancing during the phased reopening in the United States on public health outcomes using data compiled from sources including Unacast, the United States Census Bureau, and the County Health Rankings and Roadmaps Program. We rejected a primary analysis null hypothesis that stated the social distancing from April 27, 2020, to June 28, 2020, had no effect on the COVID-19-related death toll from June 29, 2020, to August 2, 2020 (p-value < 0.001), and found that it took more reduction in mobility to prevent exponential growth in case numbers for non-rural counties compared to rural counties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源