论文标题

用于行星际转移轨迹设计的基于差分进化的优化工具

A differential evolution-based optimization tool for interplanetary transfer trajectory design

论文作者

Zuo, Mingcheng, Dai, Guangming, Peng, Lei, Tang, Zhe

论文摘要

行星际转移轨迹设计的极其敏感和高度非线性的搜索空间给全球优化带来了巨大的挑战。作为代表,很难找到由欧洲航天局(ESA)设计的全球轨迹优化问题(GTOP)当前已知的最佳解决方案。为了解决这一困难,本文提出了一个强大的基于差分进化的优化工具,名为合作差异进化(代码)。代码采用了一个两阶段的进化过程,该过程集中于在早期过程中学习全球结构,并且倾向于自治地学习不同局部空间的结构。此外,考虑到全球最佳的空间分布在不同的问题上以及有关不同变量的梯度信息,已经采用了多个边界检查技术。同样,协方差矩阵适应进化策略(CMA-ES)用作局部优化器。先前的研究表明,特定的群体智能优化算法通常只能解决一个或两个GTOP问题。但是,实验测试结果表明,代码可以直接找到Cassini1和Sagas的当前最佳解决方案,并且与CMA-ES的合作可以解决Cassini2,GTOC1,Messenger(减少)和Rosetta。对于最复杂的Messenger(完整)问题,即使代码无法找到当前已知的最佳解决方案,找到的目标功能等于3.38 km/s的最佳解决方案仍然是其他群体智能算法无法轻易达到的水平。

The extremely sensitive and highly nonlinear search space of interplanetary transfer trajectory design bring about big challenges on global optimization. As a representative, the current known best solution of the global trajectory optimization problem (GTOP) designed by the European space agency (ESA) is very hard to be found. To deal with this difficulty, a powerful differential evolution-based optimization tool named COoperative Differential Evolution (CODE) is proposed in this paper. CODE employs a two-stage evolutionary process, which concentrates on learning global structure in the earlier process, and tends to self-adaptively learn the structures of different local spaces. Besides, considering the spatial distribution of global optimum on different problems and the gradient information on different variables, a multiple boundary check technique has been employed. Also, Covariance Matrix Adaptation Evolutionary Strategies (CMA-ES) is used as a local optimizer. The previous studies have shown that a specific swarm intelligent optimization algorithm usually can solve only one or two GTOP problems. However, the experimental test results show that CODE can find the current known best solutions of Cassini1 and Sagas directly, and the cooperation with CMA-ES can solve Cassini2, GTOC1, Messenger (reduced) and Rosetta. For the most complicated Messenger (full) problem, even though CODE cannot find the current known best solution, the found best solution with objective function equaling to 3.38 km/s is still a level that other swarm intelligent algorithms cannot easily reach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源