论文标题

强烈交互的超轻毫米颗粒

Strongly-Interacting Ultralight Millicharged Particles

论文作者

Alexander, Stephon, McDonough, Evan, Spergel, David N.

论文摘要

我们考虑了携带巴里昂数字的超光效率暗物质候选者的含义。如果暗物质在标准型号的baryon数字下具有少量电荷,而在可见宇宙中的不对称性相等且相反,则自然会产生。典型模型是非亚伯仪群的黑暗重子的理论,即深色量子铬 - 动力学(QCD)。对于Sub-ev深色bary子质量,暗物质光环的内部区域自然在“核密度”上,可以形成物质的外来状态,类似于中子恒星。 Fermionic暗物质的质量(即深色baryons)的tremaine-gunn下限受到强烈的短距离自身交互,通过排放浅黑色尖端的冷却以及库珀的深色夸克配对而侵犯了(超低QCD)黑暗QCD QCD尺度。我们利用浓密夸克物质的方程来开发这些强烈相互交互的超轻毫米颗粒(树桩),并找到与矮星系观测一致的光环核。这些核心通过“中子恒星”的压力阻止了核心爆发,这表明超光的深色QCD是解决无碰撞冷暗物质核心问题问题的解决方案。该模型通过直接检测和对撞机的特征以及与超导性相关的现象(例如Andreev反射和超导涡流)而与超光授予的骨化暗物质区分开。

We consider the implications of an ultra-light fermionic dark matter candidate that carries baryon number. This naturally arises if dark matter has a small charge under standard model baryon number whilst having an asymmetry equal and opposite to that in the visible universe. A prototypical model is a theory of dark baryons of a non-Abelian gauge group, i.e., a dark Quantum Chromo-Dynamics (QCD). For sub-eV dark baryon masses, the inner region of dark matter halos is naturally at 'nuclear density', allowing for the formation of exotic states of matter, akin to neutron stars. The Tremaine-Gunn lower bound on the mass of fermionic dark matter, i.e., the dark baryons, is violated by the strong short-range self-interactions, cooling via emission of light dark pions, and the Cooper pairing of dark quarks that occurs at densities that are high relative to the (ultra-low) dark QCD scale. We develop the astrophysics of these STrongly-interacting Ultra-light Millicharged Particles (STUMPs) utilizing the equation of state of dense quark matter, and find halo cores consistent with observations of dwarf galaxies. These cores are prevented from core-collapse by pressure of the 'neutron star', which suggests ultra-light dark QCD as a resolution to core-cusp problem of collisionless cold dark matter. The model is distinguished from ultra-light bosonic dark matter through direct detection and collider signatures, as well as by phenomena associated with superconductivity, such as Andreev reflection and superconducting vortices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源