论文标题

在双重图上的因子模型的自由能密度上

On the free energy density of factor models on biregular graphs

论文作者

Mészáros, András

论文摘要

令$ h(0),h(1),\ dots,h(k)$为对称凹面序列。对于$(d,k)$ - 双重因子图$ g $和$ x \ in \ {0,1 \}^v $,我们定义了hamiltonian \ [h_g(x)= \ sum_ {f \ in f} $ f $是因子节点的集合。我们证明,如果$(g_n)$是$(d,k)$ - 双重因子图的大周长序列,则$ g_n $的自由能密度收敛。限制自由能密度是由伯特(Bethe-Approximation)给出的。

Let $h(0),h(1),\dots,h(k)$ be a symmetric concave sequence. For a $(d,k)$-biregular factor graph $G$ and $x\in \{0,1\}^V$, we define the Hamiltonian \[H_G(x)=\sum_{f\in F} h\left(\sum_{v\in \partial f} x_v\right),\] where $V$ is the set of variable nodes, $F$ is the set of factor nodes. We prove that if $(G_n)$ is a large girth sequence of $(d,k)$-biregular factor graphs, then the free energy density of $G_n$ converges. The limiting free energy density is given by the Bethe-approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源