论文标题
通过旋转储层的记忆擦除热力学
Thermodynamics of memory erasure via a spin reservoir
论文作者
论文摘要
具有多个保存量的热力学为设计新型设备提供了有希望的方向。例如,Vaccaro和Barnett的[J. A. Vaccaro和S. M. Barnett,Proc。 R. Soc。 A 467,1770(2011); S. M. Barnett和J. A. Vaccaro,熵15,4956(2013)]提出的信息擦除方案,其中擦除成本仅根据能量以外的保守数量而言,允许新型的热发动机。在最近的工作中,我们研究了自旋角动量中擦除成本的离散波动和平均界限。在这里,我们从同等的工作(称为SpinLabor)和热量的热量(称为SpinTherm)的旋转作品来阐明成本。我们表明,以前发现的限制在$γ^{ - 1} \ ln {2} $的擦除成本上可能会因SpinLabor的成本而违反,并且仅适用于SpinTherm成本。我们为不同的擦除协议获得三个界限,并确定提供最紧密界限的界限。为了完整性,我们得出了广义的jarzynski平等和违规概率,这表明对于特定协议,违规的可能性可能很大。我们还得出了积分波动定理,并使用它来分析使用自旋储层的信息擦除成本。
Thermodynamics with multiple-conserved quantities offers a promising direction for designing novel devices. For example, Vaccaro and Barnett's [J. A. Vaccaro and S. M. Barnett, Proc. R. Soc. A 467, 1770 (2011); S. M. Barnett and J. A. Vaccaro, Entropy 15, 4956 (2013)] proposed information erasure scheme, where the cost of erasure is solely in terms of a conserved quantity other than energy, allows for new kinds of heat engines. In recent work, we studied the discrete fluctuations and average bounds of the erasure cost in spin angular momentum. Here we clarify the costs in terms of the spin equivalent of work, called spinlabor, and the spin equivalent of heat, called spintherm. We show that the previously-found bound on the erasure cost of $γ^{-1}\ln{2}$ can be violated by the spinlabor cost, and only applies to the spintherm cost. We obtain three bounds for spinlabor for different erasure protocols and determine the one that provides the tightest bound. For completeness, we derive a generalized Jarzynski equality and probability of violation which shows that for particular protocols the probability of violation can be surprisingly large. We also derive an integral fluctuation theorem and use it to analyze the cost of information erasure using a spin reservoir.