论文标题
Sigmalaw-Absa:法律意见文本中基于方面情感分析的数据集
SigmaLaw-ABSA: Dataset for Aspect-Based Sentiment Analysis in Legal Opinion Texts
论文作者
论文摘要
基于方面的情感分析(ABSA)是对许多不同领域的著名和正在进行的研究,但在法律领域中并未广泛讨论。许多针对各种领域的公开数据集通常满足研究人员在ABSA领域进行研究的需求。据我们所知,对于法律意见文本的基于该方面的情感分析,没有公开可用的数据集。因此,创建一个可公开可用的数据集来研究ABSA为法律领域的研究被视为重要的任务。在这项研究中,我们介绍了一个手动注释的法律意见文本数据集(Sigmalaw-absa),旨在促进研究人员完成法律领域的ABSA任务。 Sigmalaw-Absa由人类法官注释的英语法律意见文本组成。这项研究讨论了与法律领域有关的ABSA的子任务以及如何使用数据集执行它们。本文还描述了数据集的统计数据,作为基准,我们为Sigmalaw-ABSA数据集的某些现有基于深度学习的系统的性能提供了一些结果。
Aspect-Based Sentiment Analysis (ABSA) has been prominent and ongoing research over many different domains, but it is not widely discussed in the legal domain. A number of publicly available datasets for a wide range of domains usually fulfill the needs of researchers to perform their studies in the field of ABSA. To the best of our knowledge, there is no publicly available dataset for the Aspect (Party) Based Sentiment Analysis for legal opinion texts. Therefore, creating a publicly available dataset for the research of ABSA for the legal domain can be considered as a task with significant importance. In this study, we introduce a manually annotated legal opinion text dataset (SigmaLaw-ABSA) intended towards facilitating researchers for ABSA tasks in the legal domain. SigmaLaw-ABSA consists of legal opinion texts in the English language which have been annotated by human judges. This study discusses the sub-tasks of ABSA relevant to the legal domain and how to use the dataset to perform them. This paper also describes the statistics of the dataset and as a baseline, we present some results on the performance of some existing deep learning based systems on the SigmaLaw-ABSA dataset.