论文标题

\ ell-Matchoid问题具有覆盖目标的FPT-Algorithm

FPT-Algorithms for the \ell-Matchoid Problem with a Coverage Objective

论文作者

Huang, Chien-Chung, Ward, Justin

论文摘要

我们认为在等级$ k $的$ \ ell $ - 摩soid中优化覆盖范围功能的问题。我们设计固定参数算法以及流算法以计算精确的解决方案。与以前假定矩形线性表示的工作不同,我们考虑了通用的Oracle模型。对于覆盖函数是线性的特殊情况,我们给出了由$ \ ell $和$ k $参数化的确定性固定参数算法。该结果与Lovasz的下界结合在一起,Jensen和Korte展示了$ \ ell $ -Matchoid与Matroid $ \ ell $ - Parity问题之间的分离。对于一般覆盖范围功能,我们提供确定性和随机固定参数算法,该算法由$ \ ell $和$ z $进行参数化,其中$ z $是最佳解决方案中涵盖的点数。所得算法可以直接转换为流算法。对于未加权的覆盖范围功能,我们表明即使以值Oracle的形式给出该功能,我们也可以找到一个精确的解决方案(因此,我们无法访问SET系统的明确表示)。我们的结果可以在流式设置中实现,并仅根据$ \ ell $和$ z $存储许多元素,但完全占地集合的总尺寸$ n $。这表明可以通过参数化解决方案值来规避Feldman等人的最新空间下限。该结果与现有的下界结合在一起,还提供了最大化任意的下模函数的空间和时间复杂性之间的新分离,并且在Value Oracle模型中具有覆盖范围功能。

We consider the problem of optimizing a coverage function under a $\ell$-matchoid of rank $k$. We design fixed-parameter algorithms as well as streaming algorithms to compute an exact solution. Unlike previous work that presumes linear representativity of matroids, we consider the general oracle model. For the special case where the coverage function is linear, we give a deterministic fixed-parameter algorithm parameterized by $\ell$ and $k$. This result, combined with the lower bounds of Lovasz, and Jensen and Korte demonstrates a separation between the $\ell$-matchoid and the matroid $\ell$-parity problems in the setting of fixed-parameter tractability. For a general coverage function, we give both deterministic and randomized fixed-parameter algorithms, parameterized by $\ell$ and $z$, where $z$ is the number of points covered in an optimal solution. The resulting algorithms can be directly translated into streaming algorithms. For unweighted coverage functions, we show that we can find an exact solution even when the function is given in the form of a value oracle (and so we do not have access to an explicit representation of the set system). Our result can be implemented in the streaming setting and stores a number of elements depending only on $\ell$ and $z$, but completely indpendent of the total size $n$ of the ground set. This shows that it is possible to circumvent the recent space lower bound of Feldman et al, by parameterizing the solution value. This result, combined with existing lower bounds, also provides a new separation between the space and time complexity of maximizing an arbitrary submodular function and a coverage function in the value oracle model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源