论文标题

目标驱动的分析师建议

Goal-driven Command Recommendations for Analysts

论文作者

Aggarwal, Samarth, Garg, Rohin, Sancheti, Abhilasha, Guda, Bhanu Prakash Reddy, Burhanuddin, Iftikhar Ahamath

论文摘要

最近,数据分析软件应用程序成为分析师决策过程不可或缺的一部分。这些软件应用程序的用户会生成大量的非结构化日志数据。这些日志包含了用户目标的线索,传统推荐系统可能很难从日志数据中隐含建模。有了这个假设,我们想通过命令建议协助用户的分析过程。我们会根据其目的完成手头任务的目的将命令分为软件和数据类别。在前提是导致数据命令的命令序列是后者的良好预测指标,我们设计,开发和验证各种序列建模技术。在本文中,我们提出了一个框架,通过利用非结构化日志为用户提供目标驱动数据命令建议。我们使用基于Web的分析软件的日志数据来培训我们的神经网络模型并量化其性能,并与相关和竞争性基线相比。我们提出一个自定义损失函数,以根据提供的目标信息来量身定制推荐的数据命令。我们还提出了一个评估指标,以捕获建议的目标取向程度。我们通过通过提出的指标评估模型来证明我们的方法的希望,并在对抗性示例的情况下展示了我们模型的鲁棒性,在这种情况下,通过离线评估,用户活动与所选目标未对齐。

Recent times have seen data analytics software applications become an integral part of the decision-making process of analysts. The users of these software applications generate a vast amount of unstructured log data. These logs contain clues to the user's goals, which traditional recommender systems may find difficult to model implicitly from the log data. With this assumption, we would like to assist the analytics process of a user through command recommendations. We categorize the commands into software and data categories based on their purpose to fulfill the task at hand. On the premise that the sequence of commands leading up to a data command is a good predictor of the latter, we design, develop, and validate various sequence modeling techniques. In this paper, we propose a framework to provide goal-driven data command recommendations to the user by leveraging unstructured logs. We use the log data of a web-based analytics software to train our neural network models and quantify their performance, in comparison to relevant and competitive baselines. We propose a custom loss function to tailor the recommended data commands according to the goal information provided exogenously. We also propose an evaluation metric that captures the degree of goal orientation of the recommendations. We demonstrate the promise of our approach by evaluating the models with the proposed metric and showcasing the robustness of our models in the case of adversarial examples, where the user activity is misaligned with selected goal, through offline evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源