论文标题
磁盘内大约一半的littlewood多项式根部的根部
Approximately half of the roots of a random Littlewood polynomial are inside the disk
论文作者
论文摘要
我们证明,对于大$ n $,除$ o(2^{n})$除$ p(z)= \ sum_ {k = 0}^{n-1} \ pm z^k $具有$ n/2 + o(n)$ roots $ roots niut disk内部。这解决了海曼的书《功能理论研究问题》(1967)的问题。
We prove that for large $n$, all but $o(2^{n})$ polynomials of the form $P(z) = \sum_{k=0}^{n-1}\pm z^k$ have $n/2 + o(n)$ roots inside the unit disk. This solves a problem from Hayman's book 'Research Problems in Function Theory' (1967).