论文标题

瓶颈问题:信息和估计理论视图

Bottleneck Problems: Information and Estimation-Theoretic View

论文作者

Asoodeh, Shahab, Calmon, Flavio

论文摘要

信息瓶颈(IB)和隐私渠道(PF)是两个密切相关的优化问题,这些问题在机器学习中发现了应用,隐私算法设计,容量问题(例如,Gerber夫人的引理),强大的数据处理不平等等等。在这项工作中,我们首先通过统一的理论框架研究IB和PF的功能性能。然后,我们将它们连接到三个信息理论编码问题,即针对独立性,嘈杂的源编码和依赖性稀释的假设检验。利用这些连接,我们证明了IB中辅助变量的新基数绑定,使其计算更可用于离散随机变量。 在第二部分中,我们通过用其他相互信息的概念替换IB和PF中的共同信息,即$ f $ information和Arimoto的共同信息,从而引入了一个普遍的优化问题家族,称为\ textit {瓶颈问题}。然后,我们认为,与IB和PF不同,这些问题会在各种推理任务中易于解释保证,并具有对准确性和隐私的统计限制。尽管潜在的优化问题是非凸,但我们通过按照某些功能的下凸或上凹面信封来等效地表达它们来评估封闭形式的瓶颈问题。通过将此技术应用于二进制案例,我们为几个瓶颈问题得出了封闭形式的表达式。

Information bottleneck (IB) and privacy funnel (PF) are two closely related optimization problems which have found applications in machine learning, design of privacy algorithms, capacity problems (e.g., Mrs. Gerber's Lemma), strong data processing inequalities, among others. In this work, we first investigate the functional properties of IB and PF through a unified theoretical framework. We then connect them to three information-theoretic coding problems, namely hypothesis testing against independence, noisy source coding and dependence dilution. Leveraging these connections, we prove a new cardinality bound for the auxiliary variable in IB, making its computation more tractable for discrete random variables. In the second part, we introduce a general family of optimization problems, termed as \textit{bottleneck problems}, by replacing mutual information in IB and PF with other notions of mutual information, namely $f$-information and Arimoto's mutual information. We then argue that, unlike IB and PF, these problems lead to easily interpretable guarantee in a variety of inference tasks with statistical constraints on accuracy and privacy. Although the underlying optimization problems are non-convex, we develop a technique to evaluate bottleneck problems in closed form by equivalently expressing them in terms of lower convex or upper concave envelope of certain functions. By applying this technique to binary case, we derive closed form expressions for several bottleneck problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源