论文标题

$(2p_4,c_5)$ - 免费图形

On 3-Coloring of $(2P_4,C_5)$-Free Graphs

论文作者

Jelínek, Vít, Klimošová, Tereza, Masařík, Tomáš, Novotná, Jana, Pokorná, Aneta

论文摘要

在过去的十年中,遗传图的三色一直是一个深入研究的问题。遗传图类的特征是(可能是无限的)最小禁止诱导子图$ H_1,H_2,\ ldots $;同类中的图称为$(H_1,H_2,\ ldots)$ - 免费。 3色的复杂性远非被理解,即使是由几个小型禁止的诱导子图定义的类也是如此。对于$ h $ fre的图形,最多七个顶点的任何$ h $都可以解决任何复杂性。八个顶点只有两个未解决的案例,即$ 2p_4 $和$ p_8 $。对于$ p_8 $ free图,一些部分结果是已知的,但据我们所知,尚未探索$ 2p_4 $ free图。在本文中,我们表明3色问题是可在$(2P_4,C_5)$ - 免费图表上溶解的多项式时间。

The 3-coloring of hereditary graph classes has been a deeply-researched problem in the last decade. A hereditary graph class is characterized by a (possibly infinite) list of minimal forbidden induced subgraphs $H_1,H_2,\ldots$; the graphs in the class are called $(H_1,H_2,\ldots)$-free. The complexity of 3-coloring is far from being understood, even for classes defined by a few small forbidden induced subgraphs. For $H$-free graphs, the complexity is settled for any $H$ on up to seven vertices. There are only two unsolved cases on eight vertices, namely $2P_4$ and $P_8$. For $P_8$-free graphs, some partial results are known, but to the best of our knowledge, $2P_4$-free graphs have not been explored yet. In this paper, we show that the 3-coloring problem is polynomial-time solvable on $(2P_4,C_5)$-free graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源