论文标题

EM-X-DL:有效的跨设备深度学习侧通道攻击噪音EM签名

EM-X-DL: Efficient Cross-Device Deep Learning Side-Channel Attack with Noisy EM Signatures

论文作者

Danial, Josef, Das, Debayan, Golder, Anupam, Ghosh, Santosh, Raychowdhury, Arijit, Sen, Shreyas

论文摘要

与先前的工作相比,这项工作提出了跨境深度学习电磁(EM-X-DL)侧通道分析(SCA),在AES-128上达到了> 90%的单轨攻击精度,即使在存在明显较低的信噪比(SNR)的情况下,与先前的工作相比。通过智能选择多种训练设备和适当的超参数选择,可以有效地培训拟议的256级深神经网络(DNN),从而有效地利用PCA,LDA(LDA)和FFT(在8位AMPATER上运行的目标加密引擎)上的预处理技术。最后,使用EM-X-DL有效的端到端SCA泄漏检测和攻击框架表明,攻击者的平均EM痕迹的信心很高。

This work presents a Cross-device Deep-Learning based Electromagnetic (EM-X-DL) side-channel analysis (SCA), achieving >90% single-trace attack accuracy on AES-128, even in the presence of significantly lower signal-to-noise ratio (SNR), compared to the previous works. With an intelligent selection of multiple training devices and proper choice of hyperparameters, the proposed 256-class deep neural network (DNN) can be trained efficiently utilizing pre-processing techniques like PCA, LDA, and FFT on the target encryption engine running on an 8-bit Atmel microcontroller. Finally, an efficient end-to-end SCA leakage detection and attack framework using EM-X-DL demonstrates high confidence of an attacker with <20 averaged EM traces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源