论文标题
半参数VAR模型的基于等级的测试:一种测量运输方法
Rank-Based Testing for Semiparametric VAR Models: a measure transportation approach
论文作者
论文摘要
我们基于最近基于测量的基于测量的多变量{\ it中心外向等级}和{\ it signs}的概念,开发了具有未指定创新密度的半参数矢量自回旋(VAR)模型的测试。我们表明,这些概念与Le Cam的统计实验的渐近理论相结合,产生了新颖的测试程序,在广泛的创新密度(可能是非胸花,偏斜,无限矩)下,该概念是有效的。为了这样做,我们为基于中心等级的序列统计数据建立了独立兴趣的h \'ajek渐近表示结果。作为例证,我们考虑了测试多输出和可能非线性回归(经典Durbin-Watson问题的扩展)以及对矢量自动性(VAR($ p $))模型的顺序识别的问题的问题。对我们的测试及其常规应用的高斯竞争对手的蒙特卡洛比较研究证明了我们方法学的好处(在大小,力量和鲁棒性方面)。在存在不对称和Leptokurtic创新密度的情况下,这些好处尤为重要。实际数据应用程序结束了论文。
We develop a class of tests for semiparametric vector autoregressive (VAR) models with unspecified innovation densities, based on the recent measure-transportation-based concepts of multivariate {\it center-outward ranks} and {\it signs}. We show that these concepts, combined with Le Cam's asymptotic theory of statistical experiments, yield novel testing procedures, which (a)~are valid under a broad class of innovation densities (possibly non-elliptical, skewed, and/or with infinite moments), (b)~are optimal (locally asymptotically maximin or most stringent) at selected ones, and (c) are robust against additive outliers. In order to do so, we establish a H\' ajek asymptotic representation result, of independent interest, for a general class of center-outward rank-based serial statistics. As an illustration, we consider the problems of testing the absence of serial correlation in multiple-output and possibly non-linear regression (an extension of the classical Durbin-Watson problem) and the sequential identification of the order $p$ of a vector autoregressive (VAR($p$)) model. A Monte Carlo comparative study of our tests and their routinely-applied Gaussian competitors demonstrates the benefits (in terms of size, power, and robustness) of our methodology; these benefits are particularly significant in the presence of asymmetric and leptokurtic innovation densities. A real data application concludes the paper.