论文标题

市场状态和风险评估的动态

Dynamics of market states and risk assessment

论文作者

Pharasi, Hirdesh K., Seligman, Eduard, Sadhukhan, Suchetana, Majari, Parisa, Seligman, Thomas H.

论文摘要

先前的研究根据相关结构的相似性探索了金融市场的各种条件,并将其归类为市场国家。我们对这些市场国家的先前选择标准进行了修改,这主要是由于对国家之间的过渡矩阵的关注增加。聚类和因此市场状态是通过优化两个参数的优化来固定的 - 簇数和噪声抑制,但是在类似条件下,我们优先考虑避免过渡矩阵中大跳跃的聚类。我们发现,将此模型应用于SP 500和Nikkei 225市场的统计学意义上的结果,该模型在19号大流行时代(2006- 2019年)。保留了20个交易日的时期长度,但将时代的转移转移到单个交易日,我们被导致相关矩阵空间中市场轨迹的概念。我们可以在维度缩放到两个或三个维度后可视化这些状态。这种方法使用动力学改善了风险评估的选择,为市场动态治疗(例如对冲)打开了大门,并以新的视角显示了抑制噪声。

Previous research explored various conditions of financial markets based on the similarity of correlation structures and classified as market states. We introduce modifications to previous selection criteria for these market states, mainly due to increased attention to the transition matrix between the states. Clustering and thus market states are fixed by the optimization of two parameters -- number of clusters and noise suppression, but in similar conditions, we give preference to the clustering which avoids large jumps in the transition matrix. We found statistically significant results applying this model to the SP 500 and Nikkei 225 markets for the pre-COVID-19 pandemic era (2006-2019). Retaining the epoch length of 20 trading days but reducing the shift of the epoch to a single trading day we are led to the concept of a trajectory of the market in the space of correlation matrices. We may visualize these states after dimensional scaling to two or three dimensions. This approach, using dynamics, improves the options of risk assessment, opens the door to dynamical treatments of markets (e.g. hedging), and shows noise suppression in a new light.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源