论文标题
人脑自组织的七个特性
Seven properties of self-organization in the human brain
论文作者
论文摘要
自组织的原则已在新兴的计算哲学领域中获得了基本意义。自组织系统已在科学和哲学的各个领域中进行了描述,包括物理学,神经科学,生物学和医学,生态学和社会学。尽管系统体系结构及其通用可能取决于特定的概念和定义,但在大脑系统中清楚地识别了自组织的至少七个关键特性:模块化连通性,无监督学习,适应性弹性,功能弹性,功能性可塑性,功能可塑性,来自局部性到全球范围的全球功能性组织和动态系统增长。这些是根据神经生物学,认知神经科学和适应性共振理论(ART)和物理学的见解来定义的,以表明自组织可以实现稳定性和功能可塑性,同时最小化结构系统的复杂性。讨论了经验研究所告知的一个具体示例,以说明模块化,适应性学习和动态网络增长如何为人类握力控制稳定而又塑料的体感能力。提出了对机器人技术强大人工智能设计的影响。
The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain specific concepts and definitions, there are at least seven key properties of self-organization clearly identified in brain systems: modular connectivity, unsupervised learning, adaptive ability, functional resiliency, functional plasticity, from-local-to-global functional organization and dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of strong artificial intelligence in robotics are brought forward.