论文标题

影响社交网络的动态,而无需网络微观结构

Influencing dynamics on social networks without knowledge of network microstructure

论文作者

Garrod, Matthew, Jones, Nick S.

论文摘要

基于社交网络的信息活动可用于促进有益的健康行为和减轻两极分化(例如,关于气候变化或疫苗)。基于网络的干预策略通常依赖于网络结构的全部知识。由于可用性和隐私问题,获得人口级社交网络数据是不可能或不可取的。获取有关个人属性(例如年龄,收入)的信息更容易,这些信息对个人的意见及其社交网络地位共同提供了信息。我们研究以基于统计力学的意见形成模型来影响系统状态的策略。使用基于合成和基于数据的示例,我们说明了在存在外部磁场的情况下对具有模块化结构的ISING模型实施粗粒策略的优势。我们的工作提供了一种可扩展的方法,用于在大图上影响Ising系统,并在存在环境(社会)领域的情况下对Ising影响问题进行了首次探索。通过利用强大环境领域可以简化网络动态控制的观察结果,我们的发现开辟了使用社交网络理论中的见解有效地计算和实施公共信息运动的可能性,而无需昂贵或侵入性的数据收集水平。

Social network based information campaigns can be used for promoting beneficial health behaviours and mitigating polarisation (e.g. regarding climate change or vaccines). Network-based intervention strategies typically rely on full knowledge of network structure. It is largely not possible or desirable to obtain population-level social network data due to availability and privacy issues. It is easier to obtain information about individuals' attributes (e.g. age, income), which are jointly informative of an individual's opinions and their social network position. We investigate strategies for influencing the system state in a statistical mechanics based model of opinion formation. Using synthetic and data based examples we illustrate the advantages of implementing coarse-grained influence strategies on Ising models with modular structure in the presence of external fields. Our work provides a scalable methodology for influencing Ising systems on large graphs and the first exploration of the Ising influence problem in the presence of ambient (social) fields. By exploiting the observation that strong ambient fields can simplify control of networked dynamics, our findings open the possibility of efficiently computing and implementing public information campaigns using insights from social network theory without costly or invasive levels of data collection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源