论文标题

改进了使用类似玻璃的分布作为参考样本的两点相关函数估计

Improved two-point correlation function estimates using glass-like distributions as a reference sample

论文作者

Dávila-Kurbán, Federico, Sanchez, Ariel G., Lares, Marcelo, Ruiz, Andrés N.

论文摘要

两点相关函数的所有估计器均基于一个随机目录,一组点在调查的选择函数之后没有内在的聚类。高准确性估计需要使用大型随机目录,这意味着高计算成本。我们建议用类似玻璃的点分布或玻璃目录替换标准的随机目录,其特征是功率谱$ p(k)\ propto k^4 $,并且比平均分离分离大的鳞片的泊松分布的功率要少得多。我们表明,这些分布可以通过迭代应用在巴里昂声振荡研究(BAO)研究中使用的Zeldovich重建技术(BAO)获得。我们提供了相关函数的广泛使用的Landy-Szalay估计器的修改版本,该估计器适合使用玻璃目录,并将其性能与使用随机样品获得的结果进行比较。我们的结果表明,类似玻璃样品对使用泊松分布获得的结果并没有增加任何偏差。在大于玻璃目录的平均粒子间分离的尺度上,修改后的估计器可显着减少Legendre Multipors $ξ_\ ell(s)$的差异,相对于标准Landy-Szalay结果,其数量相同。在相关函数中获得给定精度所需的玻璃目录的大小明显小于使用随机样品时。即使考虑到构建玻璃目录的额外成本很小,它们的使用也可能有助于大幅度降低对未来调查的配置空间聚类分析的计算成本,同时保持高智能要求。

All estimators of the two-point correlation function are based on a random catalogue, a set of points with no intrinsic clustering following the selection function of a survey. High-accuracy estimates require the use of large random catalogues, which imply a high computational cost. We propose to replace the standard random catalogues by glass-like point distributions or glass catalogues, which are characterized by a power spectrum $P(k)\propto k^4$ and exhibit significantly less power than a Poisson distribution with the same number of points on scales larger than the mean inter-particle separation. We show that these distributions can be obtained by iteratively applying the technique of Zeldovich reconstruction commonly used in studies of baryon acoustic oscillations (BAO). We provide a modified version of the widely used Landy-Szalay estimator of the correlation function adapted to the use of glass catalogues and compare its performance with the results obtained using random samples. Our results show that glass-like samples do not add any bias with respect to the results obtained using Poisson distributions. On scales larger than the mean inter-particle separation of the glass catalogues, the modified estimator leads to a significant reduction of the variance of the Legendre multipoles $ξ_\ell(s)$ with respect to the standard Landy-Szalay results with the same number of points. The size of the glass catalogue required to achieve a given accuracy in the correlation function is significantly smaller than when using random samples. Even considering the small additional cost of constructing the glass catalogues, their use could help to drastically reduce the computational cost of configuration-space clustering analysis of future surveys while maintaining high-accuracy requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源