论文标题

二维准复合材料的力学和动力学

Mechanics and dynamics of two-dimensional quasiperiodic composites

论文作者

Beli, Danilo, Rosa, Matheus I. N., Marqui Jr., Carlos De, Ruzzene, Massimo

论文摘要

在过去的几十年中,周期性的配置一直主导着语音和弹性声音超材料结构的设计。与周期性晶体不同,准晶体缺乏平移对称性,但在旋转对称性中不受限制,这在很大程度上导致了未开发的机械和动态特性。我们研究了一个连续的弹性准晶体的家族,该家族具有不同的旋转对称顺序,这些旋转对称顺序直接通过相互空间的设计程序执行。它们的机械性能是根据对称顺序和填充分数的函数研究的。结果表明,高阶对称性(例如8-,10倍和14倍)允许具有高等效的刚度特性,这些特性可以插入组成材料的材料,同时为所有填充分数保持高水平的各向同性。因此,与周期性的六边形构型相比,准碘复合材料表现出更均匀的应变能分布。同样,在更广泛的频率范围内观察到了几乎异位波传播。还可以通过在楔形型单元中强制执行旋转对称约束来研究光谱内容,该型单元池允许估计在频率响应计算中确认的频带隙。本文提出的调查开放途径,旨在对Quasiperiodic媒体的性质进行一般探索,并具有新颖的建筑材料设计的潜力,扩大了定期媒体提供的机会。

Periodic configurations have dominated the design of phononic and elastic-acoustic metamaterial structures for the past decades. Unlike periodic crystals, quasicrystals lack translational symmetry but are unrestricted in rotational symmetries, which leads to largely unexplored mechanical and dynamic properties. We investigate a family of continuous elastic quasicrystals with different rotational symmetry orders that are directly enforced through a design procedure in reciprocal space. Their mechanical properties are investigated as a function of symmetry order and filling fraction. Results indicate that higher order symmetries, such as 8-, 10- and 14-fold, allow for high equivalent stiffness characteristics that interpolate those of the constituent material while maintaining high levels of isotropy for all filling fractions. Thus, quasiperiodic composites exhibit more uniform strain energy distributions when compared to periodic hexagonal configurations. Similarly, nearly-isotropic wave propagation is observed over a broader range of frequencies. Spectral contents are also investigated by enforcing rotational symmetry constraints in a wedge-type unit cell, which allows for the estimation of band gaps that are confirmed in frequency response computations. The investigations presented herein open avenues for the general exploration of the properties of quasiperiodic media, with potentials for novel architectured material designs that expand the opportunities provided by periodic media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源