论文标题
Lofar看到的多相和磁化中性氢
The multiphase and magnetized neutral hydrogen seen by LOFAR
论文作者
论文摘要
低频的极化观测的法拉第层造影是研究基于法拉第深度的磁离子星际介质(ISM)的结构的独特工具。低于200 MHz以下的Lofar数据显示了极化的大量特征,其起源仍然未知。先前的研究强调了这种特征与磁中性ISM的示踪剂的显着关联,例如星际粉尘和原子氢(HI)。但是,磁离子和中性培养基之间相关性的物理条件尚待澄清。在这封信中,我们进一步研究了Effelsberg-Bonn HI调查(EBHIS)的Lofar数据与HI观测值之间的相关性。我们专注于HI气体的多相特性。我们介绍了关于Lofar层析成像数据与冷(CNM),Luke-Warm(LNM)和温暖(WNM)HI相之间形态相关性的首次统计研究。我们使用正常的优化进行超光谱分析(ROHSA)方法,以基于HI光谱的高斯分解分解HI相。在至少两个视野中 - 田地3C196和四个磁场B和C中的a-我们使用定向梯度的直方图(HOG)发现Lofar和EBHIS数据之间的显着相关性。田地B和C中没有相关性是由极化中的信噪比低引起的。在3C196场中观察到的猪相关性,并且A与所有HI相相关,并且在CNM和LNM相中具有出人意料的占主导地位。我们讨论了可以解释CNM,LNM和WNM之间相关性的可能机制,以及在Faraday深度高达10 rad m $ $^{ - 2} $的极化发射。我们的结果表明,Lofar数据看到的离子培养基的复杂结构与通过HI光谱数据所追踪的弥漫性和磁中性ISM中的相变密切相关。
Faraday tomography of polarimetric observations at low frequency is a unique tool to study the structure of the magneto-ionic interstellar medium (ISM) based on Faraday depth. LOFAR data below 200 MHz revealed a plethora of features in polarization, whose origin remains unknown. Previous studies highlighted the remarkable association of such features to tracers of the magnetized-neutral ISM, as interstellar dust and atomic hydrogen (HI). However, the physical conditions responsible for the correlation between magneto-ionic and neutral media are yet to be clarified. In this letter we investigate further the correlation between LOFAR data and HI observations at 21cm from the Effelsberg-Bonn HI Survey (EBHIS). We focus on the multiphase properties of the HI gas. We present the first statistical study on the morphological correlation between LOFAR tomographic data and the cold (CNM), luke-warm (LNM), and warm (WNM) HI phases, separately. We use the Regularized Optimization for Hyper-Spectral Analysis (ROHSA) approach to decompose the HI phases based on the Gaussian decomposition of the HI spectra. In at least two fields of view -- Fields 3C196 and A -- out of four -- Fields B and C -- we find a significant correlation between LOFAR and EBHIS data using the Histograms of Oriented Gradients (HOG). The absence of correlation in Fields B and C is caused by low signal-to-noise ratio in polarization. The observed HOG correlation in Fields 3C196 and A is associated with all HI phases and it is surprisingly dominant in the CNM and LNM phases. We discuss possible mechanisms that would explain the correlation between CNM, LNM, and WNM, with polarized emission at Faraday depths up to 10 rad m$^{-2}$. Our results show how the complex structure of the ionic medium seen by LOFAR data is tightly related to phase transition in the diffuse and magnetized neutral ISM traced by HI spectroscopic data.