论文标题
Beyondplanck I.全球贝叶斯对普朗克低频仪器数据的分析
BeyondPlanck I. Global Bayesian analysis of the Planck Low Frequency Instrument data
论文作者
论文摘要
我们在动机,方法和主要产品方面描述了《超越计划》项目,并为一组伴侣论文提供了指南,这些论文以更全面的细节描述了每个结果。我们为Planck LFI观察实施了完整的端到端贝叶斯分析框架。主要产品是完整的关节后部分布$ p(ω| d)$,其中$ω$代表所有自由仪器,天体物理和宇宙学参数的集合。这种方法的显着优势是无缝的不确定性端到端传播。对于每个不确定数量,在最自然的基础上对天体物理和工具效应的准确建模;在各种分析步骤之间几乎不需要中间人类相互作用的优化计算成本;以及一个单个框架中整个分析过程的完整概述。我们特别关注低 - $ \ ell $ CMB两极分化重建与Planck LFI。我们确定了以前管道中未考虑的几个重要新效果,包括增益过度平滑和时间变化以及30和44 GHz通道中的非$ 1/f $相关噪声。我们发现所有结果都与$λ$ CDM型号一致,并且我们将电离光学深度限制为$τ= 0.066 \ pm0.013 $,低分辨率$χ^2 $概率为32%。这种不确定性比官方管道大约30%,这是由于更完整的工具模型而产生的。边缘CMB太阳偶极振幅为$ 3362.7 \pm1.4μ\ Mathrm {K} $,其中误差线直接从后部分布中得出,而无需任何临时仪器校正。我们目前尚不知道Planck LFI数据中还存在任何重要的未建模系统效应,并且首次完全利用了44 GHz通道。 (简略。)
We describe the BeyondPlanck project in terms of motivation, methodology and main products, and provide a guide to a set of companion papers that describe each result in fuller detail. We implement a complete end-to-end Bayesian analysis framework for the Planck LFI observations. The primary product is a full joint posterior distribution $P(ω|d)$, where $ω$ represents the set of all free instrumental, astrophysical, and cosmological parameters. Notable advantages of this approach are seamless end-to-end propagation of uncertainties; accurate modeling of both astrophysical and instrumental effects in the most natural basis for each uncertain quantity; optimized computational costs with little or no need for intermediate human interaction between various analysis steps; and a complete overview of the entire analysis process within one single framework. We focus in particular on low-$\ell$ CMB polarization reconstruction with Planck LFI. We identify several important new effects that have not been accounted for in previous pipelines, including gain over-smoothing and time-variable and non-$1/f$ correlated noise in the 30 and 44 GHz channels. We find that all results are consistent with the $Λ$CDM model, and we constrain the reionization optical depth to $τ=0.066\pm0.013$, with a low-resolution $χ^2$ probability-to-exceed of 32%. This uncertainty is about 30% larger than the official pipelines, arising from taking into account a more complete instrumental model. The marginal CMB Solar dipole amplitude is $3362.7\pm1.4μ\mathrm{K}$, where the error bar is derived directly from the posterior distribution without the need of any ad-hoc instrumental corrections. We are currently not aware of any significant unmodelled systematic effects remaining in the Planck LFI data, and, for the first time, the 44 GHz channel is fully exploited. (Abridged.)