论文标题

基于概率密度的深度学习范式,用于功能元结构的模糊设计

Probability-Density-Based Deep Learning Paradigm for the Fuzzy Design of Functional Metastructures

论文作者

Luo, Ying-Tao, Li, Peng-Qi, Li, Dong-Ting, Peng, Yu-Gui, Geng, Zhi-Guo, Xie, Shu-Huan, Li, Yong, Alu, Andrea, Zhu, Jie, Zhu, Xue-Feng

论文摘要

在量子力学中,可以将标准平方波函数解释为描述要在给定位置或动量中测量粒子的可能性的概率密度。该统计特性是微观模糊结构的核心。最近,混合神经结构引起了强烈的关注,导致各种智能系统具有深远的影响。在这里,我们提出了一个基于概率密度的深度学习范式,用于功能性元结构的模糊设计。与其他反设计方法相反,我们的基于概率密度的神经网络可以在高维参数空间中有效评估并准确地捕获所有合理的元结构。概率密度分布的本地最大值对应于满足所需性能的最可能的候选者。我们通过为每个目标传输光谱设计多个元结构来验证这种普遍自适应的方法,但不限于声学,实验明确地证明了逆设计的有效性和概括。

In quantum mechanics, a norm squared wave function can be interpreted as the probability density that describes the likelihood of a particle to be measured in a given position or momentum. This statistical property is at the core of the fuzzy structure of microcosmos. Recently, hybrid neural structures raised intense attention, resulting in various intelligent systems with far-reaching influence. Here, we propose a probability-density-based deep learning paradigm for the fuzzy design of functional meta-structures. In contrast to other inverse design methods, our probability-density-based neural network can efficiently evaluate and accurately capture all plausible meta-structures in a high-dimensional parameter space. Local maxima in probability density distribution correspond to the most likely candidates to meet the desired performances. We verify this universally adaptive approach in but not limited to acoustics by designing multiple meta-structures for each targeted transmission spectrum, with experiments unequivocally demonstrating the effectiveness and generalization of the inverse design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源