论文标题

原球磁盘中的全球螺旋密度波模式:螺旋臂的形态

Global Spiral Density Wave Modes in Protoplanetary Disks: Morphology of Spiral Arms

论文作者

Chen, Enze, Yu, Si-Yue, Ho, Luis C.

论文摘要

我们分析了两臂的全球螺旋密度波模式,该模式是由剃刀 - 薄的,非粘性的,自我赋予的原始球星磁盘产生的,以了解螺旋臂形态(倾斜角$α$和振幅)对各种磁盘条件的依赖性。所得的螺旋密度波模式的形态非常类似于观测值。它们的音高角度和图案速度对所采用的边界条件不敏感。在相同条件下,高斯磁盘表现出比功率法磁盘更紧密的螺旋螺旋(音高角度)。我们发现,在固定的磁盘与明星质量比($ m_d/m _*$)下,俯仰角会随着平均Toomre的稳定性参数($ \ overline Q $)或平均磁盘长宽比($ \ edline H $)而增加。对于给定的$ \叠加Q $,具有较高$ m_d/m _*$的密度波模式具有较大的音高角度,而行为逆转给定的$ \ +叠加线H $。 $α\ propto c_s^2/m_d $,俯仰角和磁盘属性之间的相互依赖性可以大致近似,其中$ c_s $是音速。我们引力不稳定的螺旋密度波可以与行星发射的螺旋形区分开:(1)大型凉爽的圆盘的螺旋螺距角度随半径落下,而低质量的热磁盘的螺旋螺距角度升高,半径为半径; (2)螺旋振幅的轮廓显示出几种倾角和颠簸。我们建议,引力不稳定的密度波可以作为一种替代场景,以解释自我赋予的原始磁盘中观察到的螺旋臂。

We analyze two-armed global spiral density wave modes generated by gravitational instability in razor-thin, non-viscous, self-gravitating protoplanetary disks to understand the dependence of spiral arm morphology (pitch angle $α$ and amplitude) on various disk conditions. The morphologies of the resulting spiral density wave modes closely resemble observations. Their pitch angles and pattern speeds are insensitive to the boundary conditions adopted. Gaussian disks exhibit more tightly wound spirals (smaller pitch angle) than power law disks under the same conditions. We find that at a fixed disk-to-star mass ratio ($M_d/M_*$), pitch angle increases with average Toomre's stability parameter ($\overline Q$) or average disk aspect ratio ($\overline h$). For a given $\overline Q$, density wave modes with higher $M_d/M_*$ have larger pitch angles, while the behavior reverses for a given $\overline h$. The interdependence between pitch angle and disk properties can be roughly approximated by $α\propto c_s^2/M_d$, where $c_s$ is the sound speed. Our gravitational instability-excited spiral density waves can be distinguished from planet-launched spirals: (1) massive cool disks have spiral pitch angle falling with radius, while low-mass hot disks have spiral pitch angle rising with radius; (2) the profile of spiral amplitude presents several dips and bumps. We propose that gravitational instability-excited density waves can serve as an alternative scenario to explain the observed spiral arms in self-gravitating protoplanetary disks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源