论文标题

奇怪的司法史schubert品种的曲线社区

Curve neighborhoods of Schubert Varieties in the odd symplectic Grassmannian

论文作者

Pech, Clelia, Shifler, Ryan M.

论文摘要

令$ \ mbox {ig}(k,2n+1)$为奇怪的格拉曼尼亚人。这是一个准\ -Mo \ -ge \ - 具有类似均匀行为的神经空间。 Mihalcea使用了$ \ mbox {ig}(k,2n+1)$中舒伯特品种曲线邻域的描述非常有限,第二个名称的作者使用了(Equivariant)Quantum Chevalley规则。在本文中,我们根据(适当的)Weyl group元素,$ k $ strict分区和BC-Cartitions的Hecke产品对曲线社区的不可还原组成部分进行了完整描述。后一组分区尊重带有夹杂物的bruhat顺序。我们的方法遵循Buch和Mihalcea的曲线社区计算舒伯特品种在同质案例中的哲学。

Let $\mbox{IG}(k,2n+1)$ be the odd symplectic Grassmannian. It is a quasi-ho\-mo\-ge\-neous space with homogeneous-like behavior. A very limited description of curve neighborhoods of Schubert varieties in $\mbox{IG}(k,2n+1)$ was used by Mihalcea and the second named author to prove an (equivariant) quantum Chevalley rule. In this paper we give a full description of the irreducible components of curve neighborhoods in terms of the Hecke product of (appropriate) Weyl group elements, $k$-strict partitions, and BC-partitions. The latter set of partitions respect the Bruhat order with inclusions. Our approach follows the philosophy of Buch and Mihalcea's curve neighborhood calculations of Schubert varieties in the homogeneous cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源