论文标题
奇怪的司法史schubert品种的曲线社区
Curve neighborhoods of Schubert Varieties in the odd symplectic Grassmannian
论文作者
论文摘要
令$ \ mbox {ig}(k,2n+1)$为奇怪的格拉曼尼亚人。这是一个准\ -Mo \ -ge \ - 具有类似均匀行为的神经空间。 Mihalcea使用了$ \ mbox {ig}(k,2n+1)$中舒伯特品种曲线邻域的描述非常有限,第二个名称的作者使用了(Equivariant)Quantum Chevalley规则。在本文中,我们根据(适当的)Weyl group元素,$ k $ strict分区和BC-Cartitions的Hecke产品对曲线社区的不可还原组成部分进行了完整描述。后一组分区尊重带有夹杂物的bruhat顺序。我们的方法遵循Buch和Mihalcea的曲线社区计算舒伯特品种在同质案例中的哲学。
Let $\mbox{IG}(k,2n+1)$ be the odd symplectic Grassmannian. It is a quasi-ho\-mo\-ge\-neous space with homogeneous-like behavior. A very limited description of curve neighborhoods of Schubert varieties in $\mbox{IG}(k,2n+1)$ was used by Mihalcea and the second named author to prove an (equivariant) quantum Chevalley rule. In this paper we give a full description of the irreducible components of curve neighborhoods in terms of the Hecke product of (appropriate) Weyl group elements, $k$-strict partitions, and BC-partitions. The latter set of partitions respect the Bruhat order with inclusions. Our approach follows the philosophy of Buch and Mihalcea's curve neighborhood calculations of Schubert varieties in the homogeneous cases.