论文标题
分层随机实验中的重新授位
Rerandomization in stratified randomized experiments
论文作者
论文摘要
分层和恢复性是在随机实验中使用的两种众所周知的方法,用于平衡基线协变量。实验设计的著名学者建议将这两种方法结合在一起。但是,有限的研究已经解决了该组合的统计特性。本文提出了两种重读方法,该方法基于整体和层特异性的摩alano虫距离,用于分层随机实验。第一种方法适用于几乎任意数量的层,地层大小和经过处理的单位的层特异性比例。第二种方法通常比第一种方法更有效,适用于固定地层数量的情况,其大小趋向于无穷大。在随机推理框架下,与分层随机化相比,我们获得了这些方法中使用的估计器的渐近分布以及降低方差的公式。我们的分析不需要关于潜在结果的任何建模假设。此外,我们为平均治疗效果提供渐近保守的差异估计器和置信区间。通过广泛的模拟研究和一个真实的示例,提出了所提出方法的优势。
Stratification and rerandomization are two well-known methods used in randomized experiments for balancing the baseline covariates. Renowned scholars in experimental design have recommended combining these two methods; however, limited studies have addressed the statistical properties of this combination. This paper proposes two rerandomization methods to be used in stratified randomized experiments, based on the overall and stratum-specific Mahalanobis distances. The first method is applicable for nearly arbitrary numbers of strata, strata sizes, and stratum-specific proportions of the treated units. The second method, which is generally more efficient than the first method, is suitable for situations in which the number of strata is fixed with their sizes tending to infinity. Under the randomization inference framework, we obtain the asymptotic distributions of estimators used in these methods and the formulas of variance reduction when compared to stratified randomization. Our analysis does not require any modeling assumption regarding the potential outcomes. Moreover, we provide asymptotically conservative variance estimators and confidence intervals for the average treatment effect. The advantages of the proposed methods are exhibited through an extensive simulation study and a real-data example.