论文标题
不均匀性对犬心室组织的解剖学数学模型中滚动波动力学的影响
The effects of inhomogeneities on scroll-wave dynamics in an anatomically realistic mathematical model for canine ventricular tissue
论文作者
论文摘要
心室心动过速(VT)和心室纤颤(VF)是致命的节律疾病,与心脏中异常的电滚动波发生有关。鉴于成像和探测的技术局限性,心脏组织内这些波的原位可视化仍然是一个挑战。因此,我们必须在数学模型中依靠心脏组织中的卷轴内滚动模拟,以发展对哺乳动物心脏中这些波的动力学的理解。我们使用犬心室组织的Hund-Rudy-Dynamic(HRD)模型的直接数值模拟来检查解剖学上现实的犬室室室的分层与肌肉纤维结构之间的电滚珠与传导与离子不均匀性之间的相互作用。我们发现毫米大小,分布式,传导不均匀性导致滚动波长大幅下降,从而增加了波浪断裂的可能性。相比之下,单个,局部,中型($ \ simeq $ cm)传导不均匀性表现出抑制波浪断裂或使波片段的自我组织为稳定,完整的卷轴的潜力。我们表明,分布或本地化的离子不均匀性抑制滚动波破裂。稳定旋转波的动力学不受此类不均匀性的显着影响,除了高浓度的分布不均匀性,这可能导致部分破裂的滚动波。我们的结果表明,犬心室组织中的不均匀性比猪心室组织中的不均匀性少,而较早的硅酸盐研究表明,这种不均匀性诱导的卷轴抑制作用很少发生。
Ventricular tachycardia (VT) and ventricular fibrillation (VF) are lethal rhythm disorders, which are associated with the occurrence of abnormal electrical scroll waves in the heart. Given the technical limitations of imaging and probing, the in situ visualization of these waves inside cardiac tissue remains a challenge. Therefore, we must, perforce, rely on in-silico simulations of scroll waves in mathematical models for cardiac tissue to develop an understanding of the dynamics of these waves in mammalian hearts. We use direct numerical simulations of the Hund-Rudy-Dynamic (HRD) model, for canine ventricular tissue, to examine the interplay between electrical scroll-waves and conduction and ionic inhomogeneities, in anatomically realistic canine ventricular geometries with muscle-fiber architecture. We find that millimeter-sized, distributed, conduction inhomogeneities cause a substantial decrease in the scroll wavelength, thereby increasing the probability for wave breaks; by contrast, single, localized, medium-sized ($\simeq $ cm) conduction inhomogeneities, exhibit the potential to suppress wave breaks or enable the self-organization of wave fragments into stable, intact scrolls. We show that ionic inhomogeneities, both distributed or localised, suppress scroll-wave break up. The dynamics of a stable rotating wave is not affected significantly by such inhomogeneities, except at high concentrations of distributed inhomogeneities, which can cause a partial break up of scroll waves. Our results indicate that inhomogeneities in the canine ventricular tissue are less arrhythmogenic than inhomogeneities in porcine ventricular tissue, for which an earlier in silico study has shown that the inhomogeneity-induced suppression of scroll waves is a rare occurrence.