论文标题

piatetski-shapiro序列中有两个变量的线性方程

Linear equations with two variables in Piatetski-Shapiro sequences

论文作者

Saito, Kota

论文摘要

对于每个非综合$α> 1 $,$ n^α$ $(n = 1,2,\ ldots)$的整数部分的顺序称为piatetski-shapiro序列,带有指数$α$,让$ \ mathrm {ps}(ps}}(α)$表示所有这些条款的集合。对于所有$ x \ subseteq \ mathbb {n} $,我们说方程$ y = ax+b $可在$ x $中解决,如果方程中有许多不同的解决方案$(x,y)\ in x^2 $。让$ a,b \ in \ mathbb {r} $,带有$ a \ neq 1 $和$ 0 \ leq b <a $,并假设方程$ y = ax+b $可在$ \ mathbb {n} $中解决。我们表明,对于所有$ 1 <α<2 $,方程$ y = ax+b $可在$ \ mathrm {ps}(α)$中解决。此外,我们调查了(s,t)$的$α\的集合,以便方程$ y = ax+b $可在$ \ mathrm {ps}(α)$中求解,其中$ 2 <s <t $。最后,我们表明该套装的Hausdorff尺寸与$ 2/s $相吻合。

For every non-integral $α>1$, the sequence of the integer parts of $n^α$ $(n=1,2,\ldots)$ is called the Piatetski-Shapiro sequence with exponent $α$, and let $\mathrm{PS}(α)$ denote the set of all those terms. For all $X\subseteq \mathbb{N}$, we say that an equation $y=ax+b$ is solvable in $X$ if the equation has infinitely many solutions of distinct pairs $(x,y)\in X^2$. Let $a,b\in \mathbb{R}$ with $a\neq 1$ and $0\leq b<a$, and suppose that the equation $y=ax+b$ is solvable in $\mathbb{N}$. We show that for all $1<α<2$ the equation $y=ax+b$ is solvable in $\mathrm{PS}(α)$. Further, we investigate the set of $α\in (s,t)$ so that the equation $y=ax+b$ is solvable in $\mathrm{PS}(α)$ where $2< s <t$. Finally, we show that the Hausdorff dimension of the set is coincident with $2/s$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源