论文标题

量子峰神经网络

Quantum Spike Neural Network

论文作者

Chen, Yanhu, Guo, Hongxiang, Wang, Cen, Gao, Xiong, Wu, Jian

论文摘要

利用量子计算机部署人工神经网络(ANN)将带来速度和规模的重大进步的潜力。在本文中,我们提出了一种量子尖峰神经网络(SNN),并全面评估并为量子SNN提供详细的数学证明,包括其成功的概率,计算准确性和算法复杂性。该证明显示了数据维度的对数多项式的量子SNNS的计算复杂性。此外,我们提供了一种将量子SNN的最低成功概率提高到近100%的方法。最后,我们介绍了量子SNN的良好性能,以解决现实世界中的模式识别。

Utilizing quantum computers to deploy artificial neural networks (ANNs) will bring the potential of significant advancements in both speed and scale. In this paper, we propose a kind of quantum spike neural networks (SNNs) as well as comprehensively evaluate and give a detailed mathematical proof for the quantum SNNs, including its successful probability, calculation accuracy, and algorithm complexity. The proof shows the quantum SNNs' computational complexity that is log-polynomial in the data dimension. Furthermore, we provide a method to improve quantum SNNs' minimum successful probability to nearly 100%. Finally, we present the good performance of quantum SNNs for solving pattern recognition from the real-world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源