论文标题

小波自适应适当的大规模流数据的正交分解

Wavelet Adaptive Proper Orthogonal Decomposition for Large Scale Flow Data

论文作者

Krah, Philipp, Engels, Thomas, Schneider, Kai, Reiss, Julius

论文摘要

正确的正交分解(POD)是使用的流体力学中强大的经典工具,例如,用于降低和提取相干流量特征。但是,由于其计算复杂性,其适用于三维直接数值模拟所产生的高分辨率数据。在这里,我们提出了基于小波的自适应版本的POD(WPOD),以克服此限制。通过使用生物表定小波来减少要分析的数据量,从而产生稀疏表示,同时便捷地提供了对压缩误差的控制。数值分析表明,如何在某些假设下平衡小波压缩和POD截断的明显误差贡献,从而使我们能够从流量问题的三维模拟中有效地处理高分辨率数据。使用合成的学术测试案例,我们将算法与随机奇异值分解进行比较。此外,我们证明了我们的方法分析2D尾流数据的能力和由直接数值模拟计算出的拍打昆虫产生的3D流动的能力。

The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited owing to its computational complexity. Here, we propose a wavelet-based adaptive version of the POD (the wPOD), in order to overcome this limitation. The amount of data to be analyzed is reduced by compressing them using biorthogonal wavelets, yielding a sparse representation while conveniently providing control of the compression error. Numerical analysis shows how the distinct error contributions of wavelet compression and POD truncation can be balanced under certain assumptions, allowing us to efficiently process high-resolution data from three-dimensional simulations of flow problems. Using a synthetic academic test case, we compare our algorithm with the randomized singular value decomposition. Furthermore, we demonstrate the ability of our method analyzing data of a 2D wake flow and a 3D flow generated by a flapping insect computed with direct numerical simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源