论文标题

精确医学研究的自由类型I错误率

A liberal type I error rate for studies in precision medicine

论文作者

Brannath, Werner, Hillner, Charlie, Rohmeyer, Kornelius

论文摘要

我们为具有多个人群的临床试验引入了一个新的多型I类错误标准。此类试验在精确医学中感兴趣,其目标是开发针对由遗传和/或临床生物标志物定义的特定亚群的治疗方法。新标准是基于观察到的,即并非所有I型错误都与整体人群中的所有患者有关。如果考虑了脱节亚群,则似乎不需要多样性调整,因为一个子人群中的主张不会影响其他患者。对于相交的亚种群,我们建议控制平均多种类型错误率,即,随机选择的患者可能会暴露于效率低下的治疗中。我们将其称为人口错误率,通过许多示例来体现它,并说明如何通过调整临界边界或调整后的P值来控制它。我们进一步定义了相应的同时置信区间。我们最终说明了通过两个简单的示例从家庭角度转移到人口错误率控制的功率增益,最近提出了用于伞试验的多个测试方法。

We introduce a new multiple type I error criterion for clinical trials with multiple populations. Such trials are of interest in precision medicine where the goal is to develop treatments that are targeted to specific sub-populations defined by genetic and/or clinical biomarkers. The new criterion is based on the observation that not all type I errors are relevant to all patients in the overall population. If disjoint sub-populations are considered, no multiplicity adjustment appears necessary, since a claim in one sub-population does not affect patients in the other ones. For intersecting sub-populations we suggest to control the average multiple type error rate, i.e. the probably that a randomly selected patient will be exposed to an inefficient treatment. We call this the population-wise error rate, exemplify it by a number of examples and illustrate how to control it with an adjustment of critical boundaries or adjusted p-values. We furthermore define corresponding simultaneous confidence intervals. We finally illustrate the power gain achieved by passing from family-wise to population-wise error rate control with two simple examples and a recently suggest multiple testing approach for umbrella trials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源