论文标题

在对话式AI代理中重写个性化查询

Personalized Query Rewriting in Conversational AI Agents

论文作者

Roshan-Ghias, Alireza, Mathialagan, Clint Solomon, Ponnusamy, Pragaash, Mathias, Lambert, Guo, Chenlei

论文摘要

对话式AI代理中的口语理解(SLU)系统通常会以自动语音识别(ASR)或自然语言理解中的语义差距(NLU)中的错误识别形式出现错误。这些错误很容易转化为用户挫败感,尤其是在经常发生的事件中,例如定期切换设备,拨打频繁的联系等。在这项工作中,我们通过利用用户在历史上成功的交互作用作为内存形式来提出一种查询重写方法。我们提出了一个神经检索模型和具有分层关注的指针生成网络,并表明它们在使用上述用户记忆的查询重写任务上的表现要好得多。我们还强调了我们使用建议的模型的方法如何利用ASR输出中的结构和语义多样性来恢复用户的意图。

Spoken language understanding (SLU) systems in conversational AI agents often experience errors in the form of misrecognitions by automatic speech recognition (ASR) or semantic gaps in natural language understanding (NLU). These errors easily translate to user frustrations, particularly so in recurrent events e.g. regularly toggling an appliance, calling a frequent contact, etc. In this work, we propose a query rewriting approach by leveraging users' historically successful interactions as a form of memory. We present a neural retrieval model and a pointer-generator network with hierarchical attention and show that they perform significantly better at the query rewriting task with the aforementioned user memories than without. We also highlight how our approach with the proposed models leverages the structural and semantic diversity in ASR's output towards recovering users' intents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源