论文标题
学习两足球的任务空间动作
Learning Task Space Actions for Bipedal Locomotion
论文作者
论文摘要
最近的工作表明,增强学习(RL)的成功,用于培训真正机器人的两足动力政策。然而,这项先前的工作集中在学习联合协调控制器上,基于遵循已经可用的控制器产生的联合轨迹的目的。因此,很难训练这些方法以实现腿部运动的更高级别目标,例如简单地指定所需的最终效果脚运动或地面反作用力。在这项工作中,我们提出了一种将机器人系统知识集成到RL中的方法,以允许以脚部设定点的方式在任务空间操作级别学习。特别是,我们将学习任务空间策略与基于模型的逆动力控制器整合在一起,该控制器将任务空间操作转化为联合级别控件。借助这种学习运动的自然动作空间,与学习纯粹的关节空间动作相比,该方法更加有效,并产生所需的任务空间动态。我们证明了模拟中的方法,还表明学识渊博的政策能够转移到真正的两足机器人Cassie。该结果鼓励进一步的研究将两只控制技术纳入学习过程的结构,以实现动态行为。
Recent work has demonstrated the success of reinforcement learning (RL) for training bipedal locomotion policies for real robots. This prior work, however, has focused on learning joint-coordination controllers based on an objective of following joint trajectories produced by already available controllers. As such, it is difficult to train these approaches to achieve higher-level goals of legged locomotion, such as simply specifying the desired end-effector foot movement or ground reaction forces. In this work, we propose an approach for integrating knowledge of the robot system into RL to allow for learning at the level of task space actions in terms of feet setpoints. In particular, we integrate learning a task space policy with a model-based inverse dynamics controller, which translates task space actions into joint-level controls. With this natural action space for learning locomotion, the approach is more sample efficient and produces desired task space dynamics compared to learning purely joint space actions. We demonstrate the approach in simulation and also show that the learned policies are able to transfer to the real bipedal robot Cassie. This result encourages further research towards incorporating bipedal control techniques into the structure of the learning process to enable dynamic behaviors.