论文标题

瞬时随机载荷对疲劳裂缝成核时间的影响的概率表征

Probabilistic characterization of the effect of transient stochastic loads on the fatigue-crack nucleation time

论文作者

Guth, Stephen, Sapsis, Themistoklis P.

论文摘要

用于材料疲劳的雨流计数算法既易于实施,又在预测材料故障时间方面取得了极大的成功。但是,它忽略了记忆效应和时间顺序的依赖性,因此遇到了处理高度间歇性或瞬态随机载荷的困难。这种负载经常出现在海洋和机械工程中的广泛应用中,例如风力涡轮机和海上结构。在这项工作中,我们采用了Serebrinsky-Ortiz粘性包膜模型来表征载荷间歇性对疲劳裂缝成核时间的影响。我们首先制定有效的数值集成方案,该方案可以直接以任何给定的负载时间序列来直接表征疲劳寿命。随后,我们考虑具有给定统计特征的随机间歇性载荷的情况。为了克服对昂贵的蒙特卡洛模拟的需求,我们将疲劳寿命提出为连贯的包膜的越野问题。假设大型间歇性尖峰的统计独立性并使用概率参数,我们为相干包膜的上跨性能提供了封闭的表达式,并获得了故障时间概率质量函数的分析近似值。分析表达式直接根据负载的概率密度函数以及相干包膜得出。我们检查了分析近似的准确性,并将预测的故障时间与各种负载的标准雨流算法进行了比较。最后,我们使用分析表达式来检查失败时间相对于一致的包膜几何特性的衍生概率分布的鲁棒性。

The rainflow counting algorithm for material fatigue is both simple to implement and extraordinarily successful for predicting material failure times. However, it neglects memory effects and time-ordering dependence, and therefore runs into difficulties dealing with highly intermittent or transient stochastic loads with heavy tailed distributions. Such loads appear frequently in a wide range of applications in ocean and mechanical engineering, such as wind turbines and offshore structures. In this work we employ the Serebrinsky-Ortiz cohesive envelope model for material fatigue to characterize the effects of load intermittency on the fatigue-crack nucleation time. We first formulate efficient numerical integration schemes, which allow for the direct characterization of the fatigue life in terms of any given load time-series. Subsequently, we consider the case of stochastic intermittent loads with given statistical characteristics. To overcome the need for expensive Monte-Carlo simulations, we formulate the fatigue life as an up-crossing problem of the coherent envelope. Assuming statistical independence for the large intermittent spikes and using probabilistic arguments we derive closed expressions for the up-crossing properties of the coherent envelope and obtain analytical approximations for the probability mass function of the failure time. The analytical expressions are derived directly in terms of the probability density function of the load, as well as the coherent envelope. We examine the accuracy of the analytical approximations and compare the predicted failure time with the standard rainflow algorithm for various loads. Finally, we use the analytical expressions to examine the robustness of the derived probability distribution for the failure time with respect to the coherent envelope geometrical properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源